∞-OPERADS AS SYMMETRIC MONOIDAL ∞-CATEGORIES

被引:1
|
作者
Haugseng, Rune [1 ]
Kock, Joachim [2 ,3 ]
机构
[1] Norwegian Univ Sci & Technol NTNU, Trondheim, Norway
[2] Univ Autonoma Barcelona, Barcelona, Spain
[3] Ctr Recerca Matemat, Bellaterra, Spain
关键词
oo-operads; symmetric monoidal oo-categories; HOMOTOPY-THEORY;
D O I
10.5565/PUBLMAT6812406
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We use Lurie's symmetric monoidal envelope functor to give two new descriptions of oo-operads: as certain symmetric monoidal oo-categories whose underlying symmetric monoidal oo-groupoids are free, and as certain symmetric monoidal oo-categories equipped with a symmetric monoidal functor to finite sets (with disjoint union as tensor product). The latter leads to a third description of oo-operads, as a localization of a presheaf oo-category, and we use this to give a simple proof of the equivalence between Lurie's and Barwick's models for oo-operads.
引用
收藏
页码:111 / 137
页数:27
相关论文
共 50 条
  • [21] COALGEBRAS IN SYMMETRIC MONOIDAL CATEGORIES OF SPECTRA
    Peroux, Maximilien
    Shipley, Brooke
    HOMOLOGY HOMOTOPY AND APPLICATIONS, 2019, 21 (01) : 1 - 18
  • [22] OPERADS IN ITERATED MONOIDAL CATEGORIES (vol 2, pg 1, 2007)
    Forcey, Stefan
    Siehler, Jacob
    Sowers, E. Seth
    JOURNAL OF HOMOTOPY AND RELATED STRUCTURES, 2011, 6 (01) : 175 - 176
  • [23] On the global homotopy theory of symmetric monoidal categories
    Lenz, Tobias
    NEW YORK JOURNAL OF MATHEMATICS, 2023, 29 : 635 - 686
  • [24] A PRACTICAL TYPE THEORY FOR SYMMETRIC MONOIDAL CATEGORIES
    Shulman, Michael
    THEORY AND APPLICATIONS OF CATEGORIES, 2021, 37 : 863 - 907
  • [25] MONADS AND MONOIDS ON SYMMETRIC MONOIDAL CLOSED CATEGORIES
    WOLFF, H
    ARCHIV DER MATHEMATIK, 1973, 24 (02) : 113 - 120
  • [26] SYMMETRIC MONOIDAL G-CATEGORIES AND THEIR STRICTIFICATION
    Guillou, Bertrand J.
    May, J. Peter
    Merling, Mona
    Osorno, Angelica M.
    QUARTERLY JOURNAL OF MATHEMATICS, 2020, 71 (01): : 207 - 246
  • [27] THE SPACE OF TRACES IN SYMMETRIC MONOIDAL INFINITY CATEGORIES
    Steinebrunner, Jan
    QUARTERLY JOURNAL OF MATHEMATICS, 2021, 72 (04): : 1461 - 1493
  • [28] Evaluating Linear Functions to Symmetric Monoidal Categories
    Bernardy, Jean-Philippe
    Spiwack, Arnaud
    HASKELL '21: PROCEEDINGS OF THE 14TH ACM SIGPLAN INTERNATIONAL SYMPOSIUM ON HASKELL, 2021, : 14 - 26
  • [29] MONADS AND MONOIDS ON SYMMETRIC MONOIDAL CLOSED CATEGORIES
    WOLFF, HE
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1971, 18 (06): : 944 - &
  • [30] ADJOINT MONADS ON SYMMETRIC MONOIDAL CLOSED CATEGORIES
    KEIGHER, WF
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 21 (01): : A80 - A81