∞-OPERADS AS SYMMETRIC MONOIDAL ∞-CATEGORIES

被引:1
|
作者
Haugseng, Rune [1 ]
Kock, Joachim [2 ,3 ]
机构
[1] Norwegian Univ Sci & Technol NTNU, Trondheim, Norway
[2] Univ Autonoma Barcelona, Barcelona, Spain
[3] Ctr Recerca Matemat, Bellaterra, Spain
关键词
oo-operads; symmetric monoidal oo-categories; HOMOTOPY-THEORY;
D O I
10.5565/PUBLMAT6812406
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We use Lurie's symmetric monoidal envelope functor to give two new descriptions of oo-operads: as certain symmetric monoidal oo-categories whose underlying symmetric monoidal oo-groupoids are free, and as certain symmetric monoidal oo-categories equipped with a symmetric monoidal functor to finite sets (with disjoint union as tensor product). The latter leads to a third description of oo-operads, as a localization of a presheaf oo-category, and we use this to give a simple proof of the equivalence between Lurie's and Barwick's models for oo-operads.
引用
收藏
页码:111 / 137
页数:27
相关论文
共 50 条
  • [1] OPERADS FOR SYMMETRIC MONOIDAL CATEGORIES
    Elmendorf, A. D.
    THEORY AND APPLICATIONS OF CATEGORIES, 2023, 39 : 535 - 544
  • [2] OPERADS IN ITERATED MONOIDAL CATEGORIES
    Forcey, Stefan
    Siehler, Jacob
    Sowers, E. Seth
    JOURNAL OF HOMOTOPY AND RELATED STRUCTURES, 2007, 2 (01) : 1 - 43
  • [3] Presentably symmetric monoidal ∞-categories are represented by symmetric monoidal model categories
    Nikolaus, Thomas
    Sagave, Steffen
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2017, 17 (05): : 3189 - 3212
  • [4] Normed symmetric monoidal categories
    Rubin, Jonathan
    JOURNAL OF HOMOTOPY AND RELATED STRUCTURES, 2025,
  • [5] Symmetric Monoidal Categories with Attributes
    Breiner, Spencer
    Nolan, John S.
    ELECTRONIC PROCEEDINGS IN THEORETICAL COMPUTER SCIENCE, 2021, (333): : 33 - 48
  • [6] Homotopy theory of modules over operads and non-Σ operads in monoidal model categories
    Harper, John E.
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2010, 214 (08) : 1407 - 1434
  • [7] Traces in symmetric monoidal categories
    Ponto, Kate
    Shulman, Michael
    EXPOSITIONES MATHEMATICAE, 2014, 32 (03) : 248 - 273
  • [8] SYMMETRIC MONOIDAL CATEGORIES AND F-CATEGORIES
    Sharma, Amit
    THEORY AND APPLICATIONS OF CATEGORIES, 2020, 35 : 417 - 512
  • [9] The Boardman-Vogt resolution of operads in monoidal model categories
    Berger, Clemens
    Moerdijk, Ieke
    TOPOLOGY, 2006, 45 (05) : 807 - 849
  • [10] PARSUMMABLE CATEGORIES AS A STRICTIFICATION OF SYMMETRIC MONOIDAL CATEGORIES
    Lenz, Tobias
    THEORY AND APPLICATIONS OF CATEGORIES, 2021, 37 : 482 - 529