Kondo effect in twisted bilayer graphene

被引:7
|
作者
Shankar, A. S. [1 ]
Oriekhov, D. O. [1 ]
Mitchell, Andrew K. [2 ,3 ]
Fritz, L. [4 ]
机构
[1] Leiden Univ, Inst Lorentz, POB 9506, NL-2300 RA Leiden, Netherlands
[2] Univ Coll Dublin, Sch Phys, Dublin, Ireland
[3] Univ Coll Dublin, Ctr Quantum Engn Sci & Technol, Dublin, Ireland
[4] Univ Utrecht, Inst Theoret Phys, Princetonplein 5, NL-3584 CC Utrecht, Netherlands
基金
欧洲研究理事会; 欧盟地平线“2020”;
关键词
RENORMALIZATION-GROUP METHOD; MAGIC-ANGLE; MOIRE BANDS; IMPURITY; ANDERSON; ELECTRON; SINGULARITIES; STATES;
D O I
10.1103/PhysRevB.107.245102
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The emergence of flat bands in twisted bilayer graphene at the magic angle can be understood in terms of a vanishing Fermi velocity of the Dirac cone. This is associated with van Hove singularities approaching the Fermi energy and becoming higher-order. In the density of states, this is reflected by flanking logarithmic van Hove divergences pinching off the central Dirac cone in energy space. The low-energy pseudogap of the Dirac cone away from the magic angle is replaced by a power-law divergence due to the higher-order van Hove singularity at the magic angle. This plays an important role in the exotic phenomena observed in this material, such as superconductivity and magnetism, by amplifying electronic correlation effects. Here we investigate one such correlation effect-the Kondo effect due to a magnetic impurity embedded in twisted bilayer graphene. We use the Bistritzer-MacDonald model to extract the low-energy density of states of the material as a function of twist angle and study the resulting quantum impurity physics using perturbative and numerical renormalization group methods. Although at zero temperature the impurity is only Kondo screened precisely at the magic angle, we find highly nontrivial behavior at finite temperatures relevant to experiments, due to the complex interplay between Dirac, van Hove, and Kondo physics.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] Correlated insulators in twisted bilayer graphene
    Mandal, Ipsita
    Yao, Jia
    Mueller, Erich J.
    PHYSICAL REVIEW B, 2021, 103 (12)
  • [42] Unusual magnetotransport in twisted bilayer graphene
    Finney, Joe
    Sharpe, Aaron L.
    Fox, Eli J.
    Hsueh, Connie L.
    Parker, Daniel E.
    Yankowitz, Matthew
    Chen, Shaowen
    Watanabe, Kenji
    Taniguchi, Takashi
    Dean, Cory R.
    Vishwanath, Ashvin
    Kastner, M. A.
    Goldhaber-Gordon, David
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2022, 119 (16)
  • [43] Strain fields in twisted bilayer graphene
    Nathanael P. Kazmierczak
    Madeline Van Winkle
    Colin Ophus
    Karen C. Bustillo
    Stephen Carr
    Hamish G. Brown
    Jim Ciston
    Takashi Taniguchi
    Kenji Watanabe
    D. Kwabena Bediako
    Nature Materials, 2021, 20 : 956 - 963
  • [44] Helical dislocation in twisted bilayer graphene
    Rakib, Tawfiqur
    Pochet, Pascal
    Ertekin, Elif
    Johnson, Harley T.
    EXTREME MECHANICS LETTERS, 2023, 63
  • [45] Twisted Bilayer Graphene: Moire with a Twist
    Dai, Shuyang
    Xiang, Yang
    Srolovitz, David J.
    NANO LETTERS, 2016, 16 (09) : 5923 - 5927
  • [46] Electronic structure of twisted bilayer graphene
    Wu Jiang-Bin
    Zhang Xin
    Tan Ping-Heng
    Feng Zhi-Hong
    Li Jia
    ACTA PHYSICA SINICA, 2013, 62 (15)
  • [47] Ferroelectricity in twisted double bilayer graphene
    Du, Renjun
    Xiao, Jingkuan
    Zhang, Di
    Cai, Xiaofan
    Jiang, Siqi
    Lian, Fuzhuo
    Watanabe, Kenji
    Taniguchi, Takashi
    Wang, Lei
    Yu, Geliang
    2D MATERIALS, 2024, 11 (02)
  • [48] Coupled phonons in twisted bilayer graphene
    Girotto, N.
    Linhart, L.
    Libisch, F.
    PHYSICAL REVIEW B, 2023, 108 (15)
  • [49] Structure of twisted and buckled bilayer graphene
    Jain, Sandeep K.
    Juricic, Vladimir
    Barkema, Gerard T.
    2D MATERIALS, 2017, 4 (01):
  • [50] Bending Moire in Twisted Bilayer Graphene
    Zhu, Zibo
    Hou, Yuan
    Wu, Hengan
    Zhu, Yinbo
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2024, 16 (01): : 45 - 52