Kondo effect in twisted bilayer graphene

被引:7
|
作者
Shankar, A. S. [1 ]
Oriekhov, D. O. [1 ]
Mitchell, Andrew K. [2 ,3 ]
Fritz, L. [4 ]
机构
[1] Leiden Univ, Inst Lorentz, POB 9506, NL-2300 RA Leiden, Netherlands
[2] Univ Coll Dublin, Sch Phys, Dublin, Ireland
[3] Univ Coll Dublin, Ctr Quantum Engn Sci & Technol, Dublin, Ireland
[4] Univ Utrecht, Inst Theoret Phys, Princetonplein 5, NL-3584 CC Utrecht, Netherlands
基金
欧洲研究理事会; 欧盟地平线“2020”;
关键词
RENORMALIZATION-GROUP METHOD; MAGIC-ANGLE; MOIRE BANDS; IMPURITY; ANDERSON; ELECTRON; SINGULARITIES; STATES;
D O I
10.1103/PhysRevB.107.245102
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The emergence of flat bands in twisted bilayer graphene at the magic angle can be understood in terms of a vanishing Fermi velocity of the Dirac cone. This is associated with van Hove singularities approaching the Fermi energy and becoming higher-order. In the density of states, this is reflected by flanking logarithmic van Hove divergences pinching off the central Dirac cone in energy space. The low-energy pseudogap of the Dirac cone away from the magic angle is replaced by a power-law divergence due to the higher-order van Hove singularity at the magic angle. This plays an important role in the exotic phenomena observed in this material, such as superconductivity and magnetism, by amplifying electronic correlation effects. Here we investigate one such correlation effect-the Kondo effect due to a magnetic impurity embedded in twisted bilayer graphene. We use the Bistritzer-MacDonald model to extract the low-energy density of states of the material as a function of twist angle and study the resulting quantum impurity physics using perturbative and numerical renormalization group methods. Although at zero temperature the impurity is only Kondo screened precisely at the magic angle, we find highly nontrivial behavior at finite temperatures relevant to experiments, due to the complex interplay between Dirac, van Hove, and Kondo physics.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Nematic superconductivity in twisted bilayer graphene
    Chichinadze, Dmitry, V
    Classen, Laura
    Chubukov, Andrey, V
    PHYSICAL REVIEW B, 2020, 101 (22)
  • [32] Rotational Disorder in Twisted Bilayer Graphene
    Beechem, Thomas E.
    Ohta, Taisuke
    Diaconescu, Bogdan
    Robinson, Jeremy T.
    ACS NANO, 2014, 8 (02) : 1655 - 1663
  • [33] Optical absorption in twisted bilayer graphene
    Moon, Pilkyung
    Koshino, Mikito
    PHYSICAL REVIEW B, 2013, 87 (20):
  • [34] Chiral Tunneling in a Twisted Graphene Bilayer
    He, Wen-Yu
    Chu, Zhao-Dong
    He, Lin
    PHYSICAL REVIEW LETTERS, 2013, 111 (06)
  • [35] Electronic spectrum of twisted bilayer graphene
    Sboychakov, A. O.
    Rakhmanov, A. L.
    Rozhkov, A. V.
    Nori, Franco
    PHYSICAL REVIEW B, 2015, 92 (07)
  • [36] Shear instability in twisted bilayer graphene
    Lin, Xianqing
    Liu, Dan
    Tomanek, David
    PHYSICAL REVIEW B, 2018, 98 (19)
  • [37] Moire phonons in twisted bilayer graphene
    Koshino, Mikito
    Son, Young-Woo
    PHYSICAL REVIEW B, 2019, 100 (07)
  • [38] Continuum model of the twisted graphene bilayer
    Lopes dos Santos, J. M. B.
    Peres, N. M. R.
    Castro Neto, A. H.
    PHYSICAL REVIEW B, 2012, 86 (15):
  • [39] Thermal conductivity of twisted bilayer graphene
    Li, Hongyang
    Ying, Hao
    Chen, Xiangping
    Nika, Denis L.
    Cocemasov, Alexandr I.
    Cai, Weiwei
    Balandin, Alexander A.
    Chen, Shanshan
    NANOSCALE, 2014, 6 (22) : 13402 - 13408
  • [40] Raman spectroscopy of twisted bilayer graphene
    Jorio, Ado
    Cancado, Luiz Gustavo
    SOLID STATE COMMUNICATIONS, 2013, 175 : 3 - 12