Kondo effect in twisted bilayer graphene

被引:7
|
作者
Shankar, A. S. [1 ]
Oriekhov, D. O. [1 ]
Mitchell, Andrew K. [2 ,3 ]
Fritz, L. [4 ]
机构
[1] Leiden Univ, Inst Lorentz, POB 9506, NL-2300 RA Leiden, Netherlands
[2] Univ Coll Dublin, Sch Phys, Dublin, Ireland
[3] Univ Coll Dublin, Ctr Quantum Engn Sci & Technol, Dublin, Ireland
[4] Univ Utrecht, Inst Theoret Phys, Princetonplein 5, NL-3584 CC Utrecht, Netherlands
基金
欧洲研究理事会; 欧盟地平线“2020”;
关键词
RENORMALIZATION-GROUP METHOD; MAGIC-ANGLE; MOIRE BANDS; IMPURITY; ANDERSON; ELECTRON; SINGULARITIES; STATES;
D O I
10.1103/PhysRevB.107.245102
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The emergence of flat bands in twisted bilayer graphene at the magic angle can be understood in terms of a vanishing Fermi velocity of the Dirac cone. This is associated with van Hove singularities approaching the Fermi energy and becoming higher-order. In the density of states, this is reflected by flanking logarithmic van Hove divergences pinching off the central Dirac cone in energy space. The low-energy pseudogap of the Dirac cone away from the magic angle is replaced by a power-law divergence due to the higher-order van Hove singularity at the magic angle. This plays an important role in the exotic phenomena observed in this material, such as superconductivity and magnetism, by amplifying electronic correlation effects. Here we investigate one such correlation effect-the Kondo effect due to a magnetic impurity embedded in twisted bilayer graphene. We use the Bistritzer-MacDonald model to extract the low-energy density of states of the material as a function of twist angle and study the resulting quantum impurity physics using perturbative and numerical renormalization group methods. Although at zero temperature the impurity is only Kondo screened precisely at the magic angle, we find highly nontrivial behavior at finite temperatures relevant to experiments, due to the complex interplay between Dirac, van Hove, and Kondo physics.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Kondo effect in twisted bilayer graphene
    Shankar, A. S.
    Oriekhov, D. O.
    Mitchell, Andrew K.
    Fritz, L.
    PHYSICAL REVIEW B, 2023, 107 (23)
  • [2] Kondo phase in twisted bilayer graphene
    Zhou, Geng-Dong
    Wang, Yi-Jie
    Tong, Ninghua
    Song, Zhi-Da
    PHYSICAL REVIEW B, 2024, 109 (04)
  • [3] Vacancy-Induced Tunable Kondo Effect in Twisted Bilayer Graphene
    Chang, Yueqing
    Yi, Jinjing
    Wu, Ang-Kun
    Kugler, Fabian B.
    Andrei, Eva Y.
    Vanderbilt, David
    Kotliar, Gabriel
    Pixley, J. H.
    PHYSICAL REVIEW LETTERS, 2024, 133 (12)
  • [4] Symmetric Kondo Lattice States in Doped Strained Twisted Bilayer Graphene
    Hu, Haoyu
    Rai, Gautam
    Crippa, Lorenzo
    Herzog-Arbeitman, Jonah
    Calugaru, Dumitru
    Wehling, Tim
    Sangiovanni, Giorgio
    Valenti, Roser
    Tsvelik, Alexei M.
    Bernevig, Andrei
    PHYSICAL REVIEW LETTERS, 2023, 131 (16)
  • [5] Kondo Lattice Model in Magic-Angle Twisted Bilayer Graphene
    Chou, Yang-Zhi
    Das Sarma, Sankar
    PHYSICAL REVIEW LETTERS, 2023, 131 (02)
  • [6] Isospin Pomeranchuk effect in twisted bilayer graphene
    Saito, Yu
    Yang, Fangyuan
    Ge, Jingyuan
    Liu, Xiaoxue
    Taniguchi, Takashi
    Watanabe, Kenji
    Li, J. I. A.
    Berg, Erez
    Young, Andrea F.
    NATURE, 2021, 592 (7853) : 220 - +
  • [7] Quantum Hall Effect in Twisted Bilayer Graphene
    Lee, Dong Su
    Riedl, Christian
    Beringer, Thomas
    Castro Neto, A. H.
    von Klitzing, Klaus
    Starke, Ulrich
    Smet, Jurgen H.
    PHYSICAL REVIEW LETTERS, 2011, 107 (21)
  • [8] Isospin Pomeranchuk effect in twisted bilayer graphene
    Yu Saito
    Fangyuan Yang
    Jingyuan Ge
    Xiaoxue Liu
    Takashi Taniguchi
    Kenji Watanabe
    J. I. A. Li
    Erez Berg
    Andrea F. Young
    Nature, 2021, 592 : 220 - 224
  • [9] Moire disorder effect in twisted bilayer graphene
    Nakatsuji, Naoto
    Koshino, Mikito
    PHYSICAL REVIEW B, 2022, 105 (24)
  • [10] Kondo effect in monolayer and bilayer graphene: Physical realizations of the multichannel Kondo models
    Kharitonov, Maxim
    Kotliar, Gabriel
    PHYSICAL REVIEW B, 2013, 88 (20):