An artificial intelligence based abdominal aortic aneurysm prognosis classifier to predict patient outcomes

被引:4
|
作者
Chung, Timothy K. [1 ]
Gueldner, Pete H. [1 ]
Aloziem, Okechukwu U. [2 ]
Liang, Nathan L. [1 ,3 ,4 ]
Vorp, David A. [1 ,4 ,5 ,6 ,7 ,8 ,9 ,10 ,11 ]
机构
[1] Univ Pittsburgh, Dept Bioengn, Pittsburgh, PA 15260 USA
[2] Univ Pittsburgh, Sch Med, Med Ctr, Pittsburgh, PA USA
[3] Univ Pittsburgh, Med Ctr, Dept Surg, Div Vasc Surg, Pittsburgh, PA USA
[4] Univ Pittsburgh, Dept Surg, Pittsburgh, PA 15260 USA
[5] Univ Pittsburgh, McGowan Inst Regenerat Med, Pittsburgh, PA 15260 USA
[6] Univ Pittsburgh, Dept Chem & Petr Engn, Pittsburgh, PA 15260 USA
[7] Univ Pittsburgh, Dept Cardiothorac Surg, Pittsburgh, PA 15260 USA
[8] Univ Pittsburgh, Clin & Translat Sci Inst, Pittsburgh, PA 15260 USA
[9] Univ Pittsburgh, Dept Mech Engn & Mat Sci, Pittsburgh, PA 15260 USA
[10] Univ Pittsburgh, Ctr Vasc Remodeling & Regenerat, Pittsburgh, PA 15260 USA
[11] Univ Pittsburgh, Bioengn Cardiothorac Surg Surg Chem & Petr Engn &, Ctr Bioengn, 300 Technol Dr,Suite 300, Pittsburgh, PA 15219 USA
关键词
MECHANICAL WALL STRESS; INTRALUMINAL THROMBUS; MODELS; BIOMECHANICS; BEHAVIOR; RISK;
D O I
10.1038/s41598-024-53459-5
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Abdominal aortic aneurysms (AAA) have been rigorously investigated to understand when their clinically-estimated risk of rupture-an event that is the 13th leading cause of death in the US-exceeds the risk associated with repair. Yet the current clinical guideline remains a one-size-fits-all "maximum diameter criterion" whereby AAA exceeding a threshold diameter is thought to make the risk of rupture high enough to warrant intervention. However, between 7 and 23.4% of smaller-sized AAA have been reported to rupture with diameters below the threshold. In this study, we train and assess machine learning models using clinical, biomechanical, and morphological indices from 381 patients to develop an aneurysm prognosis classifier to predict one of three outcomes for a given AAA patient: their AAA will remain stable, their AAA will require repair based as currently indicated from the maximum diameter criterion, or their AAA will rupture. This study represents the largest cohort of AAA patients that utilizes the first available medical image and clinical data to classify patient outcomes. The APC model therefore represents a potential clinical tool to striate specific patient outcomes using machine learning models and patient-specific image-based (biomechanical and morphological) and clinical data as input. Such a tool could greatly assist clinicians in their management decisions for patients with AAA.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Artificial Intelligence Application to Screen Abdominal Aortic Aneurysm Using Computed tomography Angiography
    Spinella, Giovanni
    Fantazzini, Alice
    Finotello, Alice
    Vincenzi, Elena
    Boschetti, Gian Antonio
    Brutti, Francesca
    Magliocco, Marco
    Pane, Bianca
    Basso, Curzio
    Conti, Michele
    JOURNAL OF DIGITAL IMAGING, 2023, 36 (05) : 2125 - 2137
  • [22] Artificial Intelligence Application to Screen Abdominal Aortic Aneurysm Using Computed tomography Angiography
    Giovanni Spinella
    Alice Fantazzini
    Alice Finotello
    Elena Vincenzi
    Gian Antonio Boschetti
    Francesca Brutti
    Marco Magliocco
    Bianca Pane
    Curzio Basso
    Michele Conti
    Journal of Digital Imaging, 2023, 36 (5) : 2125 - 2137
  • [23] Hemarthrosis in a Patient With Abdominal Aortic Aneurysm
    Tsurumi, Hiroyuki
    Yano, Hiroyuki
    Kinjo, Mitsuyo
    AMERICAN JOURNAL OF MEDICINE, 2024, 137 (08): : e149 - e150
  • [24] ABDOMINAL AORTIC ANEURYSM IN AFRICAN PATIENT
    PENN, I
    BRITISH JOURNAL OF SURGERY, 1963, 50 (224) : 598 - &
  • [25] Revolutionizing aortic aneurysm assessment with artificial intelligence
    Crawford, Sean A.
    JOURNAL OF VASCULAR SURGERY, 2024, 79 (06) : 1401 - 1401
  • [26] Using machine learning to predict outcomes following open abdominal aortic aneurysm repair
    Li, Ben
    Aljabri, Badr
    Verma, Raj
    Beaton, Derek
    Eisenberg, Naomi
    Lee, Douglas S.
    Wijeysundera, Duminda N.
    Forbes, Thomas L.
    Rotstein, Ori D.
    de Mestral, Charles
    Mamdani, Muhammad
    Roche-Nagle, Graham
    Al-Omran, Mohammed
    JOURNAL OF VASCULAR SURGERY, 2023, 78 (06) : 1426 - 1438.e6
  • [27] Artificial intelligence for fully automatic segmentation of abdominal aortic aneurysm using convolutional neural networks
    Caradu, Caroline
    Spampinato, Benedetta
    Berard, Xavier
    Ducasse, Eric
    Stenson, Katherine
    JOURNAL OF VASCULAR SURGERY, 2021, 74 (01) : 348 - 348
  • [28] Differences in patient selection and outcomes based on abdominal aortic aneurysm diameter thresholds in the Vascular Quality Initiative
    Jones, Douglas W.
    Deery, Sarah E.
    Schneider, Darren B.
    Rybin, Denis V.
    Siracuse, Jeffrey J.
    Farber, Alik
    Schermerhorn, Marc L.
    JOURNAL OF VASCULAR SURGERY, 2019, 70 (05) : 1446 - 1455
  • [29] Smoking, lung function and the prognosis of abdominal aortic aneurysm
    Greenhalgh, RM
    Powell, JT
    Fowkes, FGR
    Forbes, JF
    Ruckley, CV
    Poole-Wilson, PA
    Browse, N
    Bulpitt, CJ
    Burnand, K
    Coles, EC
    Fletcher, A
    Blair, S
    Clark, R
    Devine, C
    Ferguson, K
    Hearn, S
    Kerracher, E
    Logan, S
    McCabe, A
    Meer-Baloch, R
    Mossa, M
    Rattray, A
    Wilson, K
    Brown, L
    Franks, P
    Keen, N
    Rose, C
    Hassaine, RM
    Horrocks, M
    Budd, J
    Horrocks, M
    Baird, RN
    Lamont, P
    Wilkins, DC
    Ashley, S
    Flowerdew, K
    Baker, A
    Earnshaw, J
    Heather, B
    Gibbons, C
    Blackett, RL
    Parvin, SD
    Harvey, DR
    Hedges, R
    Finch, D
    Hocken, DB
    Morris, GE
    Shearman, CP
    Lear, P
    Lewis, P
    EUROPEAN JOURNAL OF VASCULAR AND ENDOVASCULAR SURGERY, 2000, 19 (06) : 636 - 642
  • [30] Develop an Intelligence Analysis Tool for Abdominal Aortic Aneurysm
    Hsieh, Nan-Chen
    Chen, Jui-Fa
    Tsai, Hsin-Che
    INTELLIGENT DECISION TECHNOLOGIES (IDT'2012), VOL 1, 2012, 15 : 487 - 495