An artificial intelligence based abdominal aortic aneurysm prognosis classifier to predict patient outcomes

被引:4
|
作者
Chung, Timothy K. [1 ]
Gueldner, Pete H. [1 ]
Aloziem, Okechukwu U. [2 ]
Liang, Nathan L. [1 ,3 ,4 ]
Vorp, David A. [1 ,4 ,5 ,6 ,7 ,8 ,9 ,10 ,11 ]
机构
[1] Univ Pittsburgh, Dept Bioengn, Pittsburgh, PA 15260 USA
[2] Univ Pittsburgh, Sch Med, Med Ctr, Pittsburgh, PA USA
[3] Univ Pittsburgh, Med Ctr, Dept Surg, Div Vasc Surg, Pittsburgh, PA USA
[4] Univ Pittsburgh, Dept Surg, Pittsburgh, PA 15260 USA
[5] Univ Pittsburgh, McGowan Inst Regenerat Med, Pittsburgh, PA 15260 USA
[6] Univ Pittsburgh, Dept Chem & Petr Engn, Pittsburgh, PA 15260 USA
[7] Univ Pittsburgh, Dept Cardiothorac Surg, Pittsburgh, PA 15260 USA
[8] Univ Pittsburgh, Clin & Translat Sci Inst, Pittsburgh, PA 15260 USA
[9] Univ Pittsburgh, Dept Mech Engn & Mat Sci, Pittsburgh, PA 15260 USA
[10] Univ Pittsburgh, Ctr Vasc Remodeling & Regenerat, Pittsburgh, PA 15260 USA
[11] Univ Pittsburgh, Bioengn Cardiothorac Surg Surg Chem & Petr Engn &, Ctr Bioengn, 300 Technol Dr,Suite 300, Pittsburgh, PA 15219 USA
关键词
MECHANICAL WALL STRESS; INTRALUMINAL THROMBUS; MODELS; BIOMECHANICS; BEHAVIOR; RISK;
D O I
10.1038/s41598-024-53459-5
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Abdominal aortic aneurysms (AAA) have been rigorously investigated to understand when their clinically-estimated risk of rupture-an event that is the 13th leading cause of death in the US-exceeds the risk associated with repair. Yet the current clinical guideline remains a one-size-fits-all "maximum diameter criterion" whereby AAA exceeding a threshold diameter is thought to make the risk of rupture high enough to warrant intervention. However, between 7 and 23.4% of smaller-sized AAA have been reported to rupture with diameters below the threshold. In this study, we train and assess machine learning models using clinical, biomechanical, and morphological indices from 381 patients to develop an aneurysm prognosis classifier to predict one of three outcomes for a given AAA patient: their AAA will remain stable, their AAA will require repair based as currently indicated from the maximum diameter criterion, or their AAA will rupture. This study represents the largest cohort of AAA patients that utilizes the first available medical image and clinical data to classify patient outcomes. The APC model therefore represents a potential clinical tool to striate specific patient outcomes using machine learning models and patient-specific image-based (biomechanical and morphological) and clinical data as input. Such a tool could greatly assist clinicians in their management decisions for patients with AAA.
引用
收藏
页数:10
相关论文
共 50 条
  • [11] Automatic Measurement of Abdominal Aortic Aneurysm Maximum Diameter Using Artificial Intelligence
    Lareyre, Fabien
    Adam, Cedric
    Raffort, Juliette
    EUROPEAN JOURNAL OF VASCULAR AND ENDOVASCULAR SURGERY, 2022, 63 (03) : 525 - 526
  • [12] Fully automatic detection and measurement of abdominal aortic aneurysm using artificial intelligence
    Fujiwara, J. F.
    Orii, O. M.
    Araki, K. A.
    Ogura, M. O.
    Ito, T. I.
    Oyamada, K. O.
    Morino, Y. M.
    Yoshioka, K. Y.
    EUROPEAN HEART JOURNAL, 2021, 42 : 3070 - 3070
  • [13] Incorporation of Artificial Intelligence Into Abdominal Aortic Aneurysm Care in a Tertiary Care Center
    Aboian, Edouard
    Kostiuk, Valentyna
    Chaar, Cassius Iyad Ochoa
    Fischer, Uwe
    JOURNAL OF VASCULAR SURGERY, 2024, 79 (04) : 2S - 2S
  • [14] Individual risk assessment for rupture of abdominal aortic aneurysm using artificial intelligence
    Skovbo, Joachim Sejr
    Andersen, Nicklas Sindlev
    Obel, Lasse Mollegaard
    Laursen, Malene Skaarup
    Riis, Andreas Stoklund
    Houlind, Kim Christian
    Diederichsen, Axel Cosmus Pyndt
    Lindholt, Jes Sanddal
    JOURNAL OF VASCULAR SURGERY, 2025, 81 (03)
  • [15] Perioperative Outcomes for Abdominal Aortic Aneurysm Repair Based on Aneurysm Diameter
    Ramos, Christopher
    Pujari, Amit
    Rajani, Ravi R.
    Escobar, Guillermo A.
    Rubin, Brian G.
    Jordan, William D., Jr.
    Benarroch-Gampel, Jaime
    VASCULAR AND ENDOVASCULAR SURGERY, 2020, 54 (04) : 341 - 347
  • [16] Machine learning to predict outcomes following endovascular abdominal aortic aneurysm repair
    Li, Ben
    Aljabri, Badr
    Verma, Raj
    Beaton, Derek
    Eisenberg, Naomi
    Lee, Douglas S.
    Wijeysundera, Duminda N.
    Forbes, Thomas L.
    Rotstein, Ori D.
    de Mestral, Charles
    Mamdani, Muhammad
    Roche-Nagle, Graham
    Al-Omran, Mohammed
    BRITISH JOURNAL OF SURGERY, 2023, 110 (12) : 1840 - 1849
  • [17] The effect of patient transfer on outcomes after rupture of an abdominal aortic aneurysm
    Hames, Heather
    Forbes, Thomas L.
    Harris, Jeremy R.
    Lawlor, D. Kirk
    DeRose, Guy
    Harris, Kenneth A.
    CANADIAN JOURNAL OF SURGERY, 2007, 50 (01) : 43 - 47
  • [18] Use of artificial intelligence to predict outcomes in mild aortic valve stenosis
    Julakanti, Raghav R.
    Padang, Ratnasari
    Scott, Christopher G.
    Dahl, Jordi
    Al-Shakarchi, Nader J.
    Metzger, Coby
    Lanyado, Alon
    Jackson, John, I
    Nkomo, Vuyisile T.
    Pellikka, Patricia A.
    EUROPEAN HEART JOURNAL - DIGITAL HEALTH, 2024, 6 (01): : 63 - 72
  • [19] PROGNOSIS OF ABDOMINAL AORTIC-ANEURYSM - REPLY
    GREENHALGH, RM
    BRITISH MEDICAL JOURNAL, 1990, 301 (6749): : 446 - 446
  • [20] PROGNOSIS AND TREATMENT OF ABDOMINAL AORTIC-ANEURYSM
    GRAVGAARD, E
    JUUL, S
    ALBRECHTSEN, O
    MOURITZEN, C
    SURGERY GYNECOLOGY & OBSTETRICS, 1980, 151 (06): : 777 - 780