Minkowski Functionals in SO(3) for the spin-2 CMB polarisation field

被引:2
|
作者
Duque, J. Carron [1 ,2 ]
Carones, A. [1 ,2 ]
Marinucci, D. [3 ]
Migliaccio, M. [1 ,2 ]
Vittorio, N. [1 ,2 ]
机构
[1] Univ Roma Tor Vergata, Dipartimento Fis, Via Ric Scientif 1, I-00133 Rome, Italy
[2] Sez Roma 2, INFN, Via Ric Scientif 1, I-00133 Rome, Italy
[3] Univ Roma Tor Vergata, Dipartimento Matemat, Via Ric Scientif 1, I-00133 Rome, Italy
来源
JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS | 2024年 / 01期
关键词
CMBR polarisation; non-gaussianity; NON-GAUSSIANITY; FORMULA;
D O I
10.1088/1475-7516/2024/01/039
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The study of the angular power spectrum of Cosmic Microwave Background (CMB) anisotropies, both in intensity and in polarisation, has led to the tightest constraints on cosmological parameters. However, this statistical quantity is not sensitive to any deviation from Gaussianity and statistical isotropy in the CMB data. Minkowski Functionals (MFs) have been adopted as one of the most powerful statistical tools to study such deviations, since they characterise the topology and geometry of the field of interest. In this paper, we extend the application of MFs to CMB polarisation data by introducing a new formalism, where we lift the spin 2 polarisation field to a scalar function in a higherdimensional manifold: the group of rotations of the sphere, SO(3). Such a function is defined as f = Q cos(20 - Usin(2(). We analytically obtain the expected values for the MFs of f in the case of Gaussian isotropic polarisation maps. Furthermore, we present a new pipeline which estimates these MFs from input HEALPix polarisation maps. We apply it to CMB simulations in order to validate the theoretical results and the methodology. The pipeline is to be included in the publicly available Python package Pynkowski.
引用
收藏
页数:28
相关论文
共 50 条
  • [31] Phase diagrams of a nonequilibrium mixed spin-3/2 and spin-2 Ising system in an oscillating magnetic field
    Keskin, Mustafa
    Polat, Yasin
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2009, 321 (23) : 3905 - 3912
  • [32] Casimir Effect for a Massless Spin-3/2 Field in Minkowski Spacetime
    LIU Wen-BiaoXIAO Kui~ZHANG Hong-Bao1 Department of Physics
    CommunicationsinTheoreticalPhysics, 2007, 48 (09) : 457 - 460
  • [33] Casimir effect for a massless spin-3/2 field in minkowski spacetime
    Liu Wen-Biao
    Xiao Kui
    Mang Hong-Bao
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2007, 48 (03) : 457 - 460
  • [34] On the quantum theory of massless spin-3/2 field in Minkowski spacetime
    Qiu, Weigang
    Sun, Fei
    Zhang, Hongbao
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2006, 3 (07) : 1303 - 1312
  • [35] Quantum inequalities for a massless spin-3/2 field in Minkowski spacetime
    Hu, B
    Ling, Y
    Zhang, HB
    PHYSICAL REVIEW D, 2006, 73 (04)
  • [36] Massless Spin-2 Rank-3 Tensor Field in de Sitter Universe
    M. Amiri
    M. V. Takook
    International Journal of Theoretical Physics, 2020, 59 : 1820 - 1828
  • [37] Massless Spin-2 Rank-3 Tensor Field in de Sitter Universe
    Amiri, M.
    Takook, M., V
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2020, 59 (06) : 1820 - 1828
  • [38] Generalized Gross-Pitaevskii equation adapted to the U(5) ⊃ SO(5) ⊃ SO(3) symmetry for spin-2 condensates
    He, Y. Z.
    Liu, Y. M.
    Bao, C. G.
    PHYSICAL REVIEW A, 2015, 91 (03):
  • [39] Ground states of spin-2 condensates in an external magnetic field
    Zheng, G. -P.
    Tong, Y. -G.
    Wang, F. -L.
    PHYSICAL REVIEW A, 2010, 81 (06):
  • [40] CONFORMALLY COVARIANT MASSLESS SPIN-2 FIELD-EQUATIONS
    DREW, MS
    GEGENBERG, JD
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA A-NUCLEI PARTICLES AND FIELDS, 1980, 60 (01): : 41 - 56