Minkowski Functionals in SO(3) for the spin-2 CMB polarisation field

被引:2
|
作者
Duque, J. Carron [1 ,2 ]
Carones, A. [1 ,2 ]
Marinucci, D. [3 ]
Migliaccio, M. [1 ,2 ]
Vittorio, N. [1 ,2 ]
机构
[1] Univ Roma Tor Vergata, Dipartimento Fis, Via Ric Scientif 1, I-00133 Rome, Italy
[2] Sez Roma 2, INFN, Via Ric Scientif 1, I-00133 Rome, Italy
[3] Univ Roma Tor Vergata, Dipartimento Matemat, Via Ric Scientif 1, I-00133 Rome, Italy
来源
JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS | 2024年 / 01期
关键词
CMBR polarisation; non-gaussianity; NON-GAUSSIANITY; FORMULA;
D O I
10.1088/1475-7516/2024/01/039
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The study of the angular power spectrum of Cosmic Microwave Background (CMB) anisotropies, both in intensity and in polarisation, has led to the tightest constraints on cosmological parameters. However, this statistical quantity is not sensitive to any deviation from Gaussianity and statistical isotropy in the CMB data. Minkowski Functionals (MFs) have been adopted as one of the most powerful statistical tools to study such deviations, since they characterise the topology and geometry of the field of interest. In this paper, we extend the application of MFs to CMB polarisation data by introducing a new formalism, where we lift the spin 2 polarisation field to a scalar function in a higherdimensional manifold: the group of rotations of the sphere, SO(3). Such a function is defined as f = Q cos(20 - Usin(2(). We analytically obtain the expected values for the MFs of f in the case of Gaussian isotropic polarisation maps. Furthermore, we present a new pipeline which estimates these MFs from input HEALPix polarisation maps. We apply it to CMB simulations in order to validate the theoretical results and the methodology. The pipeline is to be included in the publicly available Python package Pynkowski.
引用
收藏
页数:28
相关论文
共 50 条
  • [21] Massless spin-2 field in de Sitter space
    Pejhan, Hamed
    Bamba, Kazuharu
    Rahbardehghan, Surena
    Enayati, Mohammad
    PHYSICAL REVIEW D, 2018, 98 (04)
  • [22] Derivative interactions for a spin-2 field at cubic order
    Gao, Xian
    PHYSICAL REVIEW D, 2014, 90 (06):
  • [23] Conformally and gauge invariant spin-2 field equations
    Mayor, C. S. O.
    Otalora, G.
    Pereira, J. G.
    GRAVITATION & COSMOLOGY, 2013, 19 (03): : 163 - 170
  • [24] Conformally and gauge invariant spin-2 field equations
    C. S. O. Mayor
    G. Otálora
    J. G. Pereira
    Gravitation and Cosmology, 2013, 19 : 163 - 170
  • [25] Consistent gravitationally coupled spin-2 field theory
    Arcos, H. I.
    Lucas, Tiago Gribl
    Pereira, J. G.
    CLASSICAL AND QUANTUM GRAVITY, 2010, 27 (14)
  • [26] Exceptional Lagrangians for spin-2 field: Standard variables
    de Freitas, LR
    JOURNAL OF MATHEMATICAL PHYSICS, 2000, 41 (04) : 1843 - 1853
  • [27] Massive spin-2 field in de Sitter space
    Garidi, T
    Gazeau, JP
    Takook, MV
    JOURNAL OF MATHEMATICAL PHYSICS, 2003, 44 (09) : 3838 - 3862
  • [28] FIELD THEORY OF SPIN-2 MESONS AND AN EQUIVALENCE THEOREM
    HORVATH, Z
    NUCLEAR PHYSICS B, 1971, B 33 (01) : 214 - &
  • [29] CYK tensors, Maxwell field and conserved quantities for the spin-2 field
    Jezierski, J
    CLASSICAL AND QUANTUM GRAVITY, 2002, 19 (16) : 4405 - 4429
  • [30] SPIN-2 FIELD-THEORIES AND TENSOR-FIELD IDENTITY
    MAHESHWARI, A
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA A, 1972, A 8 (02): : 319 - +