Minkowski Functionals in SO(3) for the spin-2 CMB polarisation field

被引:2
|
作者
Duque, J. Carron [1 ,2 ]
Carones, A. [1 ,2 ]
Marinucci, D. [3 ]
Migliaccio, M. [1 ,2 ]
Vittorio, N. [1 ,2 ]
机构
[1] Univ Roma Tor Vergata, Dipartimento Fis, Via Ric Scientif 1, I-00133 Rome, Italy
[2] Sez Roma 2, INFN, Via Ric Scientif 1, I-00133 Rome, Italy
[3] Univ Roma Tor Vergata, Dipartimento Matemat, Via Ric Scientif 1, I-00133 Rome, Italy
来源
JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS | 2024年 / 01期
关键词
CMBR polarisation; non-gaussianity; NON-GAUSSIANITY; FORMULA;
D O I
10.1088/1475-7516/2024/01/039
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The study of the angular power spectrum of Cosmic Microwave Background (CMB) anisotropies, both in intensity and in polarisation, has led to the tightest constraints on cosmological parameters. However, this statistical quantity is not sensitive to any deviation from Gaussianity and statistical isotropy in the CMB data. Minkowski Functionals (MFs) have been adopted as one of the most powerful statistical tools to study such deviations, since they characterise the topology and geometry of the field of interest. In this paper, we extend the application of MFs to CMB polarisation data by introducing a new formalism, where we lift the spin 2 polarisation field to a scalar function in a higherdimensional manifold: the group of rotations of the sphere, SO(3). Such a function is defined as f = Q cos(20 - Usin(2(). We analytically obtain the expected values for the MFs of f in the case of Gaussian isotropic polarisation maps. Furthermore, we present a new pipeline which estimates these MFs from input HEALPix polarisation maps. We apply it to CMB simulations in order to validate the theoretical results and the methodology. The pipeline is to be included in the publicly available Python package Pynkowski.
引用
收藏
页数:28
相关论文
共 50 条
  • [1] ON CONFORMALLY COVARIANT SPIN-2/3 AND SPIN-2 EQUATIONS
    LOIDE, RK
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1986, 19 (05): : 827 - 829
  • [2] MASSIVE SPIN-2 FIELD
    DESER, S
    TRUBATCH, J
    TRUBATCH, S
    CANADIAN JOURNAL OF PHYSICS, 1966, 44 (08) : 1715 - &
  • [3] THE FIELD WITH SPIN-2 .2.
    NOUS, MH
    LETTERE AL NUOVO CIMENTO, 1983, 38 (03): : 72 - 76
  • [4] THE FIELD WITH SPIN-2 .1.
    NOUS, MH
    LETTERE AL NUOVO CIMENTO, 1983, 38 (03): : 65 - 71
  • [5] DIRAC QUANTIZATION OF SPIN-2 FIELD
    BAAKLINI, NS
    TUITE, M
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1979, 12 (01): : L13 - L15
  • [6] Teleparallelism for a massive spin-2 field
    Nishino, Hitoshi
    Rajpoot, Subhash
    CLASSICAL AND QUANTUM GRAVITY, 2011, 28 (12)
  • [7] MINIMALLY COUPLED SPIN-2 FIELD
    TAIT, W
    PHYSICAL REVIEW D, 1972, 5 (12): : 3272 - &
  • [8] MINIMAL COUPLING IN SPIN-2 FIELD
    REILLY, JF
    NUCLEAR PHYSICS B, 1974, 70 (02) : 356 - 364
  • [9] A CONFORMAL GAUGE FOR THE SPIN-2 FIELD
    GALLES, CD
    LETTERE AL NUOVO CIMENTO, 1985, 42 (07): : 382 - 384
  • [10] Spin-2 fields on Minkowski space near spacelike and null infinity
    Friedrich, H
    CLASSICAL AND QUANTUM GRAVITY, 2003, 20 (01) : 101 - 117