Three classes of permutation quadrinomials in odd characteristic

被引:1
|
作者
Chen, Changhui [1 ]
Kan, Haibin [2 ,3 ]
Peng, Jie [1 ]
Zheng, Lijing [4 ]
Li, Yanjun [5 ]
机构
[1] Shanghai Normal Univ, Math & Sci Coll, Shanghai 200234, Peoples R China
[2] Fudan Univ, Sch Comp Sci, Shanghai Key Lab Intelligent Informat Proc, Shanghai, Peoples R China
[3] Shanghai Inst Adv Commun & Data Sci, Shanghai Engn Res Ctr Blockchain, Shanghai 200433, Peoples R China
[4] Univ South China, Sch Math & Phys, Hengyang 421001, Hunan, Peoples R China
[5] Anhui Univ Finance & Econ, Inst Stat & Appl Math, Bengbu 233030, Anhui, Peoples R China
关键词
Finite field; Niho exponent; Permutation polynomial; Quadrinomial; FINITE-FIELDS; POLYNOMIALS; TRINOMIALS; BINOMIALS;
D O I
10.1007/s12095-023-00672-0
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, we construct three classes of permutation quadrinomials with Niho exponents of the form f (x) = alpha(0)x(r) + alpha(1)x(s1(pm-1)+r) + alpha(2)x(s2(pm-1)+r) + alpha(3)x(s3(pm-1)+r) is an element of F-pn [x], where p is an odd prime, n = 2m is a positive even integer, and (r, s(1), s(2), s(3)) = (1, -1/p(k)-2, 1, p(k)-1/p(k)-2), (1, p(k)+1/p(k)+2, 1, 1/p(k)+2) and (3, 1, 2, 3), respectively. The exponents of the first two classes are considered for the first time, and the third class covers all the permutation polynomials proposed by Gupta (Designs Codes and Cryptography 88, 1-17, 2020).
引用
收藏
页码:351 / 365
页数:15
相关论文
共 50 条
  • [31] New permutation quadrinomials over F22m
    Tu, Ziran
    Zeng, Xiangyong
    Helleseth, Tor
    FINITE FIELDS AND THEIR APPLICATIONS, 2018, 50 : 304 - 318
  • [32] Strongly real classes in finite unitary groups of odd characteristic
    Gates, Zachary
    Singh, Anupam
    Vinroot, C. Ryan
    JOURNAL OF GROUP THEORY, 2014, 17 (04) : 589 - 617
  • [33] ON EQUIVALENCE CLASSES OF MATRICES OVER A FINITE FIELD OF ODD CHARACTERISTIC
    Zhuravlev, E., V
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2023, 20 (02): : 1200 - 1210
  • [34] Permutation polynomials with low differential uniformity over finite fields of odd characteristic
    WenJie Jia
    XiangYong Zeng
    ChunLei Li
    Tor Helleseth
    Lei Hu
    Science China Mathematics, 2013, 56 : 1429 - 1440
  • [35] Permutation polynomials with low differential uniformity over finite fields of odd characteristic
    Jia WenJie
    Zeng XiangYong
    Li ChunLei
    Helleseth, Tor
    Hu Lei
    SCIENCE CHINA-MATHEMATICS, 2013, 56 (07) : 1429 - 1440
  • [36] Permutation polynomials with low differential uniformity over finite fields of odd characteristic
    JIA WenJie
    ZENG XiangYong
    LI ChunLei
    HELLESETH Tor
    HU Lei
    Science China(Mathematics), 2013, 56 (07) : 1429 - 1440
  • [37] More classes of permutation pentanomials over finite fields with even characteristic
    Zhang, Tongliang
    Zheng, Lijing
    FINITE FIELDS AND THEIR APPLICATIONS, 2025, 103
  • [38] More classes of permutation pentanomials over finite fields with characteristic two
    Zhang, Tongliang
    Zheng, Lijing
    Zhao, Hanbing
    FINITE FIELDS AND THEIR APPLICATIONS, 2024, 98
  • [39] On the boomerang uniformity of a class of permutation quadrinomials over finite fields
    Wu, Yanan
    Wang, Lisha
    Li, Nian
    Zeng, Xiangyong
    Tang, Xiaohu
    DISCRETE MATHEMATICS, 2022, 345 (10)
  • [40] A vanishing theorem for characteristic classes of odd-dimensional manifold bundles
    Ebert, Johannes
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2013, 684 : 1 - 29