Three classes of permutation quadrinomials in odd characteristic

被引:1
|
作者
Chen, Changhui [1 ]
Kan, Haibin [2 ,3 ]
Peng, Jie [1 ]
Zheng, Lijing [4 ]
Li, Yanjun [5 ]
机构
[1] Shanghai Normal Univ, Math & Sci Coll, Shanghai 200234, Peoples R China
[2] Fudan Univ, Sch Comp Sci, Shanghai Key Lab Intelligent Informat Proc, Shanghai, Peoples R China
[3] Shanghai Inst Adv Commun & Data Sci, Shanghai Engn Res Ctr Blockchain, Shanghai 200433, Peoples R China
[4] Univ South China, Sch Math & Phys, Hengyang 421001, Hunan, Peoples R China
[5] Anhui Univ Finance & Econ, Inst Stat & Appl Math, Bengbu 233030, Anhui, Peoples R China
关键词
Finite field; Niho exponent; Permutation polynomial; Quadrinomial; FINITE-FIELDS; POLYNOMIALS; TRINOMIALS; BINOMIALS;
D O I
10.1007/s12095-023-00672-0
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, we construct three classes of permutation quadrinomials with Niho exponents of the form f (x) = alpha(0)x(r) + alpha(1)x(s1(pm-1)+r) + alpha(2)x(s2(pm-1)+r) + alpha(3)x(s3(pm-1)+r) is an element of F-pn [x], where p is an odd prime, n = 2m is a positive even integer, and (r, s(1), s(2), s(3)) = (1, -1/p(k)-2, 1, p(k)-1/p(k)-2), (1, p(k)+1/p(k)+2, 1, 1/p(k)+2) and (3, 1, 2, 3), respectively. The exponents of the first two classes are considered for the first time, and the third class covers all the permutation polynomials proposed by Gupta (Designs Codes and Cryptography 88, 1-17, 2020).
引用
收藏
页码:351 / 365
页数:15
相关论文
共 50 条
  • [21] On a conjecture about a class of permutation quadrinomials
    Li, Kangquan
    Qu, Longjiang
    Li, Chao
    Chen, Hao
    FINITE FIELDS AND THEIR APPLICATIONS, 2020, 66
  • [22] On Permutation Quadrinomials and 4-Uniform BCT
    Li, Nian
    Xiong, Maosheng
    Zeng, Xiangyong
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2021, 67 (07) : 4845 - 4855
  • [23] Complete permutation polynomials over finite fields of odd characteristic
    Xu Guangkui
    Cao, Xiwang
    FINITE FIELDS AND THEIR APPLICATIONS, 2015, 31 : 228 - 240
  • [24] A class of permutation trinomials over finite fields of odd characteristic
    Ziran Tu
    Xiangyong Zeng
    Cryptography and Communications, 2019, 11 : 563 - 583
  • [25] A class of permutation trinomials over finite fields of odd characteristic
    Tu, Ziran
    Zeng, Xiangyong
    CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2019, 11 (04): : 563 - 583
  • [26] A class of permutation quadrinomials over finite fields
    Gupta, Rohit
    Rai, Amritanshu
    COMMUNICATIONS IN ALGEBRA, 2024, 52 (04) : 1518 - 1524
  • [27] Classification of Permutation Trinomials and Quadrinomials Over Prime Fields
    Rybalkin M.A.
    Journal of Mathematical Sciences, 2014, 200 (6) : 734 - 741
  • [28] The permutation action of finite symplectic groups of odd characteristic on their standard modules
    Chandler, David B.
    Sin, Peter
    Xiang, Qing
    JOURNAL OF ALGEBRA, 2007, 318 (02) : 871 - 892
  • [29] PERMUTATION POLYNOMIALS OF DEGREE 8 OVER FINITE FIELDS OF ODD CHARACTERISTIC
    Fan, Xiang
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2020, 101 (01) : 40 - 55
  • [30] Determination of a class of permutation trinomials in characteristic three
    Hou, Xiang-dong
    Tu, Ziran
    Zeng, Xiangyong
    FINITE FIELDS AND THEIR APPLICATIONS, 2020, 61