COLORFUL HAMILTON CYCLES IN RANDOM GRAPHS

被引:1
|
作者
Chakraborti, Debsoumya [1 ]
Frieze, Alan M. [2 ]
Hasabnis, Mihir [2 ]
机构
[1] Inst Basic Sci IBS, Discrete Math Grp, Daejeon 34126, South Korea
[2] Carnegie Mellon Univ, Dept Math Sci, Pittsburgh, PA 15213 USA
关键词
random graph; rainbow Hamilton cycle; path rotation-extention technique;
D O I
10.1137/21M1403291
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given an n vertex graph whose edges have colored from one of r colors C = {c1, c2, . . . , cr}, we define the Hamilton cycle color profile hcp(G) to be the set of vectors (m1, m2, ... , mr) \in [0, n]r such that there exists a Hamilton cycle that is the concatenation of r paths P1, P2, . . . , Pr, where Pi contains mi edges of color ci. We study hcp(Gn,p) when the edges are randomly colored. We discuss the profile close to the threshold for the existence of a Hamilton cycle and the threshold for when hcp(Gn,p) = {(m1, m2, . . . , mr) \in [0, n]r : m1 + m2 + \cdot \cdot \cdot + mr = n}.
引用
收藏
页码:51 / 64
页数:14
相关论文
共 50 条
  • [31] On the number of Hamilton cycles in pseudo-random graphs
    Krivelevich, Michael
    ELECTRONIC JOURNAL OF COMBINATORICS, 2012, 19 (01):
  • [32] Finding Hamilton Cycles in Random Graphs With Few Queries
    Ferber, Asaf
    Krivelevich, Michael
    Sudakov, Benny
    Vieira, Pedro
    RANDOM STRUCTURES & ALGORITHMS, 2016, 49 (04) : 635 - 668
  • [33] AN ALGORITHM FOR FINDING HAMILTON CYCLES IN RANDOM DIRECTED-GRAPHS
    FRIEZE, AM
    JOURNAL OF ALGORITHMS, 1988, 9 (02) : 181 - 204
  • [34] Packing, counting and covering Hamilton cycles in random directed graphs
    Asaf Ferber
    Gal Kronenberg
    Eoin Long
    Israel Journal of Mathematics, 2017, 220 : 57 - 87
  • [35] ON THE RESILIENCE OF HAMILTONICITY AND OPTIMAL PACKING OF HAMILTON CYCLES IN RANDOM GRAPHS
    Ben-Shimon, Sonny
    Krivelevich, Michael
    Sudakov, Benny
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2011, 25 (03) : 1176 - 1193
  • [36] Packing, counting and covering Hamilton cycles in random directed graphs
    Ferber, Asaf
    Kronenberg, Gal
    Long, Eoin
    ISRAEL JOURNAL OF MATHEMATICS, 2017, 220 (01) : 57 - 87
  • [37] Cycles Avoiding a Color in Colorful Graphs
    Meierling, Dirk
    Muettel, Janina
    Rautenbach, Dieter
    JOURNAL OF GRAPH THEORY, 2016, 81 (04) : 342 - 350
  • [38] Colored graphs without colorful cycles
    Ball, Richard N.
    Pultr, Ales
    Vojtechovsky, Petr
    COMBINATORICA, 2007, 27 (04) : 407 - 427
  • [39] Colored graphs without colorful cycles
    Richard N. Ball
    Aleš Pultr
    Petr Vojtěchovský
    Combinatorica, 2007, 27 : 407 - 427
  • [40] Resilient degree sequences with respect to Hamilton cycles and matchings in random graphs
    Condon, Padraig
    Diaz, Alberto Espuny
    Kuhn, Daniela
    Osthus, Deryk
    Kim, Jaehoon
    ELECTRONIC JOURNAL OF COMBINATORICS, 2019, 26 (04):