COLORFUL HAMILTON CYCLES IN RANDOM GRAPHS

被引:1
|
作者
Chakraborti, Debsoumya [1 ]
Frieze, Alan M. [2 ]
Hasabnis, Mihir [2 ]
机构
[1] Inst Basic Sci IBS, Discrete Math Grp, Daejeon 34126, South Korea
[2] Carnegie Mellon Univ, Dept Math Sci, Pittsburgh, PA 15213 USA
关键词
random graph; rainbow Hamilton cycle; path rotation-extention technique;
D O I
10.1137/21M1403291
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given an n vertex graph whose edges have colored from one of r colors C = {c1, c2, . . . , cr}, we define the Hamilton cycle color profile hcp(G) to be the set of vectors (m1, m2, ... , mr) \in [0, n]r such that there exists a Hamilton cycle that is the concatenation of r paths P1, P2, . . . , Pr, where Pi contains mi edges of color ci. We study hcp(Gn,p) when the edges are randomly colored. We discuss the profile close to the threshold for the existence of a Hamilton cycle and the threshold for when hcp(Gn,p) = {(m1, m2, . . . , mr) \in [0, n]r : m1 + m2 + \cdot \cdot \cdot + mr = n}.
引用
收藏
页码:51 / 64
页数:14
相关论文
共 50 条
  • [21] AN ALGORITHM FOR FINDING HAMILTON PATHS AND CYCLES IN RANDOM GRAPHS
    BOLLOBAS, B
    FENNER, TI
    FRIEZE, AM
    COMBINATORICA, 1987, 7 (04) : 327 - 341
  • [22] HAMILTON CYCLES IN RANDOM GRAPHS WITH A FIXED DEGREE SEQUENCE
    Cooper, Colin
    Frieze, Alan
    Krivelevich, Michael
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2010, 24 (02) : 558 - 569
  • [23] Generating and counting Hamilton cycles in random regular graphs
    Frieze, A
    Jerrum, M
    Molloy, M
    Robinson, R
    Wormald, N
    JOURNAL OF ALGORITHMS, 1996, 21 (01) : 176 - 198
  • [24] OPTIMAL PACKINGS OF HAMILTON CYCLES IN SPARSE RANDOM GRAPHS
    Krivelevich, Michael
    Samotij, Wojciech
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2012, 26 (03) : 964 - 982
  • [25] Color-biased Hamilton cycles in random graphs
    Gishboliner, Lior
    Krivelevich, Michael
    Michaeli, Peleg
    RANDOM STRUCTURES & ALGORITHMS, 2022, 60 (03) : 289 - 307
  • [26] PARALLEL ALGORITHMS FOR FINDING HAMILTON CYCLES IN RANDOM GRAPHS
    FRIEZE, AM
    INFORMATION PROCESSING LETTERS, 1987, 25 (02) : 111 - 117
  • [27] Counting Hamilton cycles in sparse random directed graphs
    Ferber, Asaf
    Kwan, Matthew
    Sudakov, Benny
    RANDOM STRUCTURES & ALGORITHMS, 2018, 53 (04) : 592 - 603
  • [28] HAMILTON CYCLES IN A CLASS OF RANDOM DIRECTED-GRAPHS
    COOPER, C
    FRIEZE, A
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1994, 62 (01) : 151 - 163
  • [29] 1-PANCYCLIC HAMILTON CYCLES IN RANDOM GRAPHS
    COOPER, C
    RANDOM STRUCTURES & ALGORITHMS, 1992, 3 (03) : 277 - 287
  • [30] Edge-disjoint Hamilton Cycles in Random Graphs
    Knox, Fiachra
    Kuehn, Daniela
    Osthus, Deryk
    RANDOM STRUCTURES & ALGORITHMS, 2015, 46 (03) : 397 - 445