THE APPROXIMATION RATIO OF THE k-OPT HEURISTIC FOR THE EUCLIDEAN TRAVELING SALESMAN PROBLEM

被引:5
|
作者
Brodowsky, Ulrich A.
Hougardy, Stefan [1 ,2 ]
Zhong, Xianghui [1 ,2 ]
机构
[1] Univ Bonn, Res Inst Discrete Math, D-53113 Bonn, Germany
[2] Univ Bonn, Hausdorff Ctr Math, D-53113 Bonn, Germany
关键词
traveling salesman problem; Euclidean TSP; approximation algorithm; k-Opt heuristic; ALGORITHM;
D O I
10.1137/21M146199X
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The k-Opt heuristic is a simple improvement heuristic for the traveling salesman prob-lem. It starts with an arbitrary tour and then repeatedly replaces k edges of the tour by k other edges, as long as this yields a shorter tour. We will prove that for the 2-dimensional Euclidean traveling salesman problem with n cities the approximation ratio of the k-Opt heuristic is theta(log n/ log log n). This improves the upper bound of O(log n) given by Chandra, Karloff, and Tovey in [SIAM J. Com-put., 28 (1999), pp. 1998--2029] and provides for the first time a nontrivial lower bound for the case k >= 3. Our results not only hold for the Euclidean norm but extend to arbitrary p-norms with 1 <= p < infinity .
引用
收藏
页码:841 / 864
页数:24
相关论文
共 50 条
  • [41] Exact Heuristic Algorithm for Traveling Salesman Problem
    Lin, Dongmei
    Wu, Xiangbin
    Wang, Dong
    PROCEEDINGS OF THE 9TH INTERNATIONAL CONFERENCE FOR YOUNG COMPUTER SCIENTISTS, VOLS 1-5, 2008, : 9 - +
  • [42] Heuristic Approaches for the Probabilistic Traveling Salesman Problem
    Weiler, Christoph
    Biesinger, Benjamin
    Hu, Bin
    Raidl, Guenther R.
    COMPUTER AIDED SYSTEMS THEORY - EUROCAST 2015, 2015, 9520 : 342 - 349
  • [43] Iterated k-opt local search for the maximum clique problem
    Katayama, Kengo
    Sadamatsu, Masashi
    Narihisa, Hiroyuki
    EVOLUTIONARY COMPUTATION IN COMBINATORIAL OPTIMIZATION, PROCEEDINGS, 2007, 4446 : 84 - +
  • [44] THE TRAVELING SALESMAN PROBLEM UNDER SQUARED EUCLIDEAN DISTANCES
    de Berg, Mark
    van Nijnatten, Fred
    Sitters, Rene
    Woeginger, Gerhard J.
    Wolff, Alexander
    27TH INTERNATIONAL SYMPOSIUM ON THEORETICAL ASPECTS OF COMPUTER SCIENCE (STACS 2010), 2010, 5 : 239 - 250
  • [45] Hard to solve instances of the Euclidean Traveling Salesman Problem
    Hougardy, Stefan
    Zhong, Xianghui
    MATHEMATICAL PROGRAMMING COMPUTATION, 2021, 13 (01) : 51 - 74
  • [46] Hierarchical Approach in Clustering to Euclidean Traveling Salesman Problem
    Fajar, Abdulah
    Herman, Nanna Suryana
    Abu, Nur Azman
    Shahib, Sahrin
    ADVANCED RESEARCH ON ELECTRONIC COMMERCE, WEB APPLICATION, AND COMMUNICATION, PT 1, 2011, 143 : 192 - +
  • [47] Nonoblivious 2-Opt Heuristics for the Traveling Salesman Problem
    Levin, Asaf
    Yovel, Uri
    NETWORKS, 2013, 62 (03) : 201 - 219
  • [48] An O(log n) approximation ratio for the asymmetric traveling salesman path problem
    Chekuri, Chandra
    Pal, Martin
    APPROXIMATION, RANDOMIZATION AND COMBINATORIAL OPTIMIZATION: ALGORITHMS AND TECHNIQUES, 2006, 4110 : 95 - 103
  • [49] A memetic neural network for the Euclidean traveling salesman problem
    Creput, Jean-Charles
    Koukam, Abderrafiaa
    NEUROCOMPUTING, 2009, 72 (4-6) : 1250 - 1264
  • [50] SOLUTION OF TRAVELING SALESMAN PROBLEM BY 4-OPT METHOD
    KUO, SS
    LINGEMAN, JC
    SIAM REVIEW, 1968, 10 (04) : 479 - &