THE APPROXIMATION RATIO OF THE k-OPT HEURISTIC FOR THE EUCLIDEAN TRAVELING SALESMAN PROBLEM

被引:5
|
作者
Brodowsky, Ulrich A.
Hougardy, Stefan [1 ,2 ]
Zhong, Xianghui [1 ,2 ]
机构
[1] Univ Bonn, Res Inst Discrete Math, D-53113 Bonn, Germany
[2] Univ Bonn, Hausdorff Ctr Math, D-53113 Bonn, Germany
关键词
traveling salesman problem; Euclidean TSP; approximation algorithm; k-Opt heuristic; ALGORITHM;
D O I
10.1137/21M146199X
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The k-Opt heuristic is a simple improvement heuristic for the traveling salesman prob-lem. It starts with an arbitrary tour and then repeatedly replaces k edges of the tour by k other edges, as long as this yields a shorter tour. We will prove that for the 2-dimensional Euclidean traveling salesman problem with n cities the approximation ratio of the k-Opt heuristic is theta(log n/ log log n). This improves the upper bound of O(log n) given by Chandra, Karloff, and Tovey in [SIAM J. Com-put., 28 (1999), pp. 1998--2029] and provides for the first time a nontrivial lower bound for the case k >= 3. Our results not only hold for the Euclidean norm but extend to arbitrary p-norms with 1 <= p < infinity .
引用
收藏
页码:841 / 864
页数:24
相关论文
共 50 条
  • [31] An Efficient Heuristic Algorithm for the Traveling Salesman Problem
    Azimi, Parham
    Daneshvar, Peyman
    ADVANCED MANUFACTURING AND SUSTAINABLE LOGISTICS, PROCEEDINGS, 2010, 46 : 384 - +
  • [32] A Quantum Heuristic Algorithm for the Traveling Salesman Problem
    Bang, Jeongho
    Ryu, Junghee
    Lee, Changhyoup
    Yoo, Seokwon
    Lim, James
    Lee, Jinhyoung
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2012, 61 (12) : 1944 - 1949
  • [33] Heuristic approaches for the family traveling salesman problem
    Bernardino, Raquel
    Paias, Ana
    INTERNATIONAL TRANSACTIONS IN OPERATIONAL RESEARCH, 2021, 28 (01) : 262 - 295
  • [34] A MULTIPERIOD TRAVELING SALESMAN PROBLEM - HEURISTIC ALGORITHMS
    PALETTA, G
    COMPUTERS & OPERATIONS RESEARCH, 1992, 19 (08) : 789 - 795
  • [35] A heuristic for the pickup and delivery traveling salesman problem
    Renaud, J
    Boctor, FF
    Ouenniche, J
    COMPUTERS & OPERATIONS RESEARCH, 2000, 27 (09) : 905 - 916
  • [36] A NEW HEURISTIC FOR THE PERIOD TRAVELING SALESMAN PROBLEM
    CHAO, IM
    GOLDEN, BL
    WASIL, EA
    COMPUTERS & OPERATIONS RESEARCH, 1995, 22 (05) : 553 - 565
  • [37] A quantum heuristic algorithm for the traveling salesman problem
    Jeongho Bang
    Junghee Ryu
    Changhyoup Lee
    Seokwon Yoo
    James Lim
    Jinhyoung Lee
    Journal of the Korean Physical Society, 2012, 61 : 1944 - 1949
  • [38] A faster heuristic for the traveling salesman problem with drone
    Hokama, Pedro Henrique Del Bianco
    Lintzmayer, Carla Negri
    San Felice, Mario Cesar
    OPTIMIZATION LETTERS, 2024,
  • [39] An improved heuristic for the period traveling salesman problem
    Bertazzi, L
    Paletta, G
    Speranza, MG
    COMPUTERS & OPERATIONS RESEARCH, 2004, 31 (08) : 1215 - 1222
  • [40] New heuristic algorithm for traveling salesman problem
    Shahab, M. L.
    INTERNATIONAL CONFERENCE ON MATHEMATICS: PURE, APPLIED AND COMPUTATION, 2019, 1218