Techno-economic analysis of a new thermal storage operation strategy for a solar aided liquid air energy storage system

被引:5
|
作者
Li, Da [1 ]
Duan, Liqiang [1 ]
机构
[1] North China Elect Power Univ, Natl Thermal Power Engn & Technol Res Ctr, Sch Energy Power & Mech Engn, State Key Lab Alternate Elect Power Syst Renewable, Beijing 102206, Peoples R China
基金
中国国家自然科学基金;
关键词
Liquid air energy storage; Solar energy; Operation strategy; Technical and economic; LEVEL PERFORMANCE; OPTIMIZATION; DESIGN; HEAT; COLD; LAES;
D O I
10.1016/j.est.2023.110029
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The SA-LAES system is an economical and efficient energy storage solution that combines solar energy with LAES. However, the inherent instability of solar energy can result in uncertainty regarding heat storage, thereby compromising the stability of the energy storage system. The development of more economical, efficient, and stable strategies for the SA-LAES system represents a challenging task. The present study puts forward a novel thermal storage operation scheme (Strategy 2) for SA-LAES systems integrated with electric heating during valley periods, thereby achieving long-term stable operation of the energy storage system via the alternating utilization of two full molten salt tanks and one empty molten salt tank. Theoretical and case studies are conducted based on thermodynamic and economical technical indicators, and detailed comparisons are made with the traditional strategy (Strategy 1) of only changing the solar multiple and capacity. The results show the exergy destruction of Strategy 1 mainly occurs in air turbines under off-design operating conditions. The exergy destruction of Strategy 2 is mainly in the electric heater part. The single-day analysis found that the new strategy has a more significant advantage in terms of exergy efficiency than Strategy 1 when the direct normal irradiance (DNI) is below 650 W/ m2. In the case study, the levelized cost of energy (LCOE) values for Nanning, Beijing, and Hami regions in Strategy 2 are 0.118 $/kWh, 0.077 $/kWh, and 0.062 $/kWh, respectively. The LCOE values of Strategy 2 are decreased by 10.97 %, 27.49 %, and 3.40 % compared to Strategy 1, respectively. The payback periods for investments in the Beijing and Hami regions have decreased by 67.63 % and 16.41 %, respectively. The research presented in this article provides an economical, efficient, and stable operating strategy for thermal storage in the SA-LAES system.
引用
收藏
页数:21
相关论文
共 50 条
  • [41] Techno-economic Analysis of Energy Storage System for Wind Farms: The UK Perspective
    Campos-Gaona, David
    Madariaga, Ander
    Zafar, Jawwad
    Anaya-Lara, Olimpo
    Burt, Graeme
    2018 INTERNATIONAL CONFERENCE ON SMART ENERGY SYSTEMS AND TECHNOLOGIES (SEST), 2018,
  • [42] Techno-economic assessment on a multi-stage compressed carbon dioxide energy storage system with liquid storage
    Ma, Haoyuan
    Liu, Zhan
    ENERGY REPORTS, 2022, 8 : 11740 - 11750
  • [43] Techno-economic analysis of screening metal hydride pairs for a 910 MWhth thermal energy storage system
    Feng, Penghui
    Liu, Yang
    Ayub, Iqra
    Wu, Zhen
    Yang, Fusheng
    Zhang, Zaoxiao
    APPLIED ENERGY, 2019, 242 : 148 - 156
  • [44] TECHNO-ECONOMIC ANALYSIS OF EMERGING ENERGY STORAGE TECHNOLOGIES FOR A MICROGRID
    Schmitt, Joshua
    Hofer, Douglas
    Pryor, Owen
    Khawly, George
    Bulnes, Fernando Karg
    McClung, Aaron
    PROCEEDINGS OF ASME TURBO EXPO 2024: TURBOMACHINERY TECHNICAL CONFERENCE AND EXPOSITION, GT2024, VOL 6, 2024,
  • [45] Techno-economic and social analysis of energy storage for commercial buildings
    Yan, Xiaohui
    Zhang, Xuehui
    Chen, Haisheng
    Xu, Yujie
    Tan, Chunqing
    ENERGY CONVERSION AND MANAGEMENT, 2014, 78 : 125 - 136
  • [46] Techno-economic analysis of grid-tied energy storage
    Masebinu, S. O.
    Akinlabi, E. T.
    Muzenda, E.
    Aboyade, A. O.
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCE AND TECHNOLOGY, 2018, 15 (01) : 231 - 242
  • [47] Techno-economic study of the storage of fluctuating renewable energy in liquid hydrocarbons
    Koenig, Daniel H.
    Freiberg, Marcel
    Dietrich, Ralph-Uwe
    Woerner, Antje
    FUEL, 2015, 159 : 289 - 297
  • [48] Stacking Grid Services with Energy Storage Techno-Economic Analysis
    Tsagkou, Anna S.
    Kerasidis, Evangelos D.
    Doukas, Dimitrios I.
    Labridis, Dimitris P.
    Marinopoulos, Antonis G.
    Tengner, Tomas
    2017 IEEE MANCHESTER POWERTECH, 2017,
  • [49] Techno-economic analysis of grid-tied energy storage
    S. O. Masebinu
    E. T. Akinlabi
    E. Muzenda
    A. O. Aboyade
    International Journal of Environmental Science and Technology, 2018, 15 : 231 - 242
  • [50] Techno-Economic Analysis of Using Reversible Turbomachinery for Pumped Thermal Energy Storage Systems
    Parisi, Simone
    Desai, Nishith B.
    Haglind, Fredrik
    JOURNAL OF SOLAR ENERGY ENGINEERING-TRANSACTIONS OF THE ASME, 2024, 146 (05):