Techno-economic analysis of a new thermal storage operation strategy for a solar aided liquid air energy storage system

被引:5
|
作者
Li, Da [1 ]
Duan, Liqiang [1 ]
机构
[1] North China Elect Power Univ, Natl Thermal Power Engn & Technol Res Ctr, Sch Energy Power & Mech Engn, State Key Lab Alternate Elect Power Syst Renewable, Beijing 102206, Peoples R China
基金
中国国家自然科学基金;
关键词
Liquid air energy storage; Solar energy; Operation strategy; Technical and economic; LEVEL PERFORMANCE; OPTIMIZATION; DESIGN; HEAT; COLD; LAES;
D O I
10.1016/j.est.2023.110029
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The SA-LAES system is an economical and efficient energy storage solution that combines solar energy with LAES. However, the inherent instability of solar energy can result in uncertainty regarding heat storage, thereby compromising the stability of the energy storage system. The development of more economical, efficient, and stable strategies for the SA-LAES system represents a challenging task. The present study puts forward a novel thermal storage operation scheme (Strategy 2) for SA-LAES systems integrated with electric heating during valley periods, thereby achieving long-term stable operation of the energy storage system via the alternating utilization of two full molten salt tanks and one empty molten salt tank. Theoretical and case studies are conducted based on thermodynamic and economical technical indicators, and detailed comparisons are made with the traditional strategy (Strategy 1) of only changing the solar multiple and capacity. The results show the exergy destruction of Strategy 1 mainly occurs in air turbines under off-design operating conditions. The exergy destruction of Strategy 2 is mainly in the electric heater part. The single-day analysis found that the new strategy has a more significant advantage in terms of exergy efficiency than Strategy 1 when the direct normal irradiance (DNI) is below 650 W/ m2. In the case study, the levelized cost of energy (LCOE) values for Nanning, Beijing, and Hami regions in Strategy 2 are 0.118 $/kWh, 0.077 $/kWh, and 0.062 $/kWh, respectively. The LCOE values of Strategy 2 are decreased by 10.97 %, 27.49 %, and 3.40 % compared to Strategy 1, respectively. The payback periods for investments in the Beijing and Hami regions have decreased by 67.63 % and 16.41 %, respectively. The research presented in this article provides an economical, efficient, and stable operating strategy for thermal storage in the SA-LAES system.
引用
收藏
页数:21
相关论文
共 50 条
  • [31] Techno-economic optimization of an energy system with sorption thermal energy storage in different energy markets
    Scapino, Luca
    De Servi, Carlo
    Zondag, Herbert A.
    Diriken, Jan
    Rindt, Camilo C. M.
    Sciacovelli, Adriano
    APPLIED ENERGY, 2020, 258
  • [32] A techno-economic analysis for an integrated solar PV/T system with thermal and electrical storage - case study
    Athukorala, A. U. C. D.
    Jayasuriya, W. J. A.
    Ragulageethan, S.
    Sirimanna, M. P. G.
    Attalage, R. A.
    Perera, A. T. D.
    2015 MORATUWA ENGINEERING RESEARCH CONFERENCE (MERCON), 2015, : 182 - 187
  • [33] Design and analysis of flexible integration of solar aided liquid air energy storage system
    Li, Da
    Duan, Liqiang
    ENERGY, 2022, 259
  • [34] Near isothermal compressed air energy storage system in residential and commercial buildings: Techno-economic analysis
    Cheekatamarla, Praveen K.
    Kassaee, Saiid
    Abu-Heiba, Ahmad
    Momen, Ayyoub M.
    ENERGY, 2022, 251
  • [35] Energy storage system design for large-scale solar PV in Malaysia: techno-economic analysis
    Laajimi, Mahmoud
    Go, Yun Ii
    Go, Yun Ii (y.go@hw.ac.uk), 1600, Springer Science and Business Media B.V. (08):
  • [36] Techno-economic analysis of bulk-scale compressed air energy storage in power system decarbonisation
    He, Wei
    Dooner, Mark
    King, Marcus
    Li, Dacheng
    Guo, Songshan
    Wang, Jihong
    APPLIED ENERGY, 2021, 282
  • [37] Techno-economic analysis of bulk-scale compressed air energy storage in power system decarbonisation
    He, Wei
    Dooner, Mark
    King, Marcus
    Li, Dacheng
    Guo, Songshan
    Wang, Jihong
    APPLIED ENERGY, 2021, 282
  • [38] Techno-Economic analysis of solar thermal seasonal thermochemical storage for Indian Himalayan cities
    Pujari, Ankush Shankar
    Majumdar, Rudrodip
    Subramaniam, C.
    Saha, Sandip K.
    APPLIED THERMAL ENGINEERING, 2025, 269
  • [39] Techno-economic feasibility of solar power plants considering PV/CSP with electrical/thermal energy storage system
    Liu, Tianye
    Yang, Jingze
    Yang, Zhen
    Duan, Yuanyuan
    ENERGY CONVERSION AND MANAGEMENT, 2022, 255
  • [40] Research on Techno-economic Evaluation of New Type Compressed Air Energy Storage Coupled With Thermal Power Unit
    Li J.
    Li X.
    Wei F.
    Yan P.
    Liu J.
    Yu D.
    Zhongguo Dianji Gongcheng Xuebao/Proceedings of the Chinese Society of Electrical Engineering, 2023, 43 (23): : 9171 - 9182