TTA-COPE: Test-Time Adaptation for Category-Level Object Pose Estimation

被引:14
|
作者
Lee, Taeyeop [1 ]
Tremblay, Jonathan [2 ]
Blukis, Valts [2 ]
Wen, Bowen [2 ]
Lee, Byeong-Uk [1 ]
Shin, Inkyu [1 ]
Birchfield, Stan [2 ]
Kweon, In So [1 ]
Yoon, Kuk-Jin [1 ]
机构
[1] Korea Adv Inst Sci & Technol, Daejeon, South Korea
[2] NVIDIA, San Francisco, CA USA
关键词
D O I
10.1109/CVPR52729.2023.02039
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Test-time adaptation methods have been gaining attention recently as a practical solution for addressing source-to-target domain gaps by gradually updating the model without requiring labels on the target data. In this paper, we propose a method of test-time adaptation for category-level object pose estimation called TTA-COPE. We design a pose ensemble approach with a self-training loss using pose-aware confidence. Unlike previous unsupervised domain adaptation methods for category-level object pose estimation, our approach processes the test data in a sequential, online manner, and it does not require access to the source domain at runtime. Extensive experimental results demonstrate that the proposed pose ensemble and the self-training loss improve category-level object pose performance during test time under both semi-supervised and unsupervised settings.
引用
收藏
页码:21285 / 21295
页数:11
相关论文
共 50 条
  • [11] GenPose: Generative Category-level Object Pose Estimation via Diffusion Models
    Zhang, Jiyao
    Wu, Mingdong
    Dong, Hao
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [12] GS-Pose: Category-Level Object Pose Estimation via Geometric and Semantic Correspondence
    Wang, Pengyuan
    Ikeda, Takuya
    Lee, Robert
    Nishiwaki, Koichi
    COMPUTER VISION - ECCV 2024, PT XXVII, 2025, 15085 : 108 - 126
  • [13] HS-Pose: Hybrid Scope Feature Extraction for Category-level Object Pose Estimation
    Zheng, Linfang
    Wang, Chen
    Sun, Yinghan
    Dasgupta, Esha
    Chen, Hua
    Leonardis, Ales
    Zhang, Wei
    Chang, Hyung Jin
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 17163 - 17173
  • [14] An efficient network for category-level 6D object pose estimation
    Sun, Shantong
    Liu, Rongke
    Sun, Shuqiao
    Yang, Xinxin
    Lu, Guangshan
    SIGNAL IMAGE AND VIDEO PROCESSING, 2021, 15 (07) : 1643 - 1651
  • [15] U-COPE: Taking a Further Step to Universal 9D Category-Level Object Pose Estimation
    Zhang, Li
    Meng, Weiqing
    Zhong, Yan
    Kong, Bin
    Xu, Mingliang
    Du, Jianming
    Wang, Xue
    Wang, Rujing
    Liu, Liu
    COMPUTER VISION - ECCV 2024, PT X, 2025, 15068 : 254 - 270
  • [16] CatFormer: Category-Level 6D Object Pose Estimation with Transformer
    Yu, Sheng
    Zhai, Di-Hua
    Xia, Yuanqing
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 7, 2024, : 6808 - 6816
  • [17] RANSAC Optimization for Category-level 6D Object Pose Estimation
    Chen, Ying
    Kang, Guixia
    Wang, Yiping
    2020 5TH INTERNATIONAL CONFERENCE ON MECHANICAL, CONTROL AND COMPUTER ENGINEERING (ICMCCE 2020), 2020, : 50 - 56
  • [18] Category-Level Object Detection, Pose Estimation and Reconstruction from Stereo Images
    Zhang, Chuanrui
    Ling, Yonggen
    Lu, Minglei
    Qin, Minghan
    Wang, Haoqian
    COMPUTER VISION - ECCV 2024, PT XXXIV, 2025, 15092 : 332 - 349
  • [19] An efficient network for category-level 6D object pose estimation
    Shantong Sun
    Rongke Liu
    Shuqiao Sun
    Xinxin Yang
    Guangshan Lu
    Signal, Image and Video Processing, 2021, 15 : 1643 - 1651
  • [20] SGPA: Structure-Guided Prior Adaptation for Category-Level 6D Object Pose Estimation
    Chen, Kai
    Dou, Qi
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 2753 - 2762