HS-Pose: Hybrid Scope Feature Extraction for Category-level Object Pose Estimation

被引:21
|
作者
Zheng, Linfang [1 ,4 ]
Wang, Chen [1 ,2 ]
Sun, Yinghan [1 ]
Dasgupta, Esha [4 ]
Chen, Hua [1 ]
Leonardis, Ales [4 ]
Zhang, Wei [1 ,3 ]
Chang, Hyung Jin [4 ]
机构
[1] Southern Univ Sci & Technol, Dept Mech & Energy Engn, Shenzhen, Peoples R China
[2] Univ Hong Kong, Dept Comp Sci, Hong Kong, Peoples R China
[3] Peng Cheng Lab, Shenzhen, Peoples R China
[4] Univ Birmingham, Sch Comp Sci, Birmingham, England
基金
中国国家自然科学基金;
关键词
D O I
10.1109/CVPR52729.2023.01646
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we focus on the problem of category-level object pose estimation, which is challenging due to the large intra-category shape variation. 3D graph convolution (3D-GC) based methods have been widely used to extract local geometric features, but they have limitations for complex shaped objects and are sensitive to noise. Moreover, the scale and translation invariant properties of 3D-GC restrict the perception of an object's size and translation information. In this paper, we propose a simple network structure, the HS-layer, which extends 3D-GC to extract hybrid scope latent features from point cloud data for category-level object pose estimation tasks. The proposed HS-layer: 1) is able to perceive local-global geometric structure and global information, 2) is robust to noise, and 3) can encode size and translation information. Our experiments show that the simple replacement of the 3D-GC layer with the proposed HS-layer on the baseline method (GPV-Pose) achieves a significant improvement, with the performance increased by 14.5% on 5 degrees 2cm metric and 10.3% on IoU(75). Our method outperforms the state-of-the-art methods by a large margin (8.3% on 5 degrees 2cm, 6.9% on IoU(75)) on REAL275 dataset and runs in real-time (50 FPS)(1).
引用
收藏
页码:17163 / 17173
页数:11
相关论文
共 50 条
  • [1] Category-Level Articulated Object Pose Estimation
    Li, Xiaolong
    Wang, He
    Yi, Li
    Guibas, Leonidas
    Abbott, A. Lynn
    Song, Shuran
    2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, : 3703 - 3712
  • [2] Category-Level Object Pose Estimation with Statistic Attention
    Jiang, Changhong
    Mu, Xiaoqiao
    Zhang, Bingbing
    Liang, Chao
    Xie, Mujun
    SENSORS, 2024, 24 (16)
  • [3] iCaps: Iterative Category-Level Object Pose and Shape Estimation
    Deng, Xinke
    Geng, Junyi
    Bretl, Timothy
    Xiang, Yu
    Fox, Dieter
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2022, 7 (02): : 1784 - 1791
  • [4] A Visual Navigation Perspective for Category-Level Object Pose Estimation
    Guo, Jiaxin
    Zhong, Fangxun
    Xiong, Rong
    Liu, Yunhui
    Wang, Yue
    Liao, Yiyi
    COMPUTER VISION - ECCV 2022, PT VI, 2022, 13666 : 123 - 141
  • [5] Zero-Shot Category-Level Object Pose Estimation
    Goodwin, Walter
    Vaze, Sagar
    Havoutis, Ioannis
    Posner, Ingmar
    COMPUTER VISION, ECCV 2022, PT XXXIX, 2022, 13699 : 516 - 532
  • [6] TG-Pose: Delving Into Topology and Geometry for Category-Level Object Pose Estimation
    Zhan, Yue
    Wang, Xin
    Nie, Lang
    Zhao, Yang
    Yang, Tangwen
    Ruan, Qiuqi
    IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 9749 - 9762
  • [7] Category-Level Metric Scale Object Shape and Pose Estimation
    Lee, Taeyeop
    Lee, Byeong-Uk
    Kim, Myungchul
    Kweon, I. S.
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2021, 6 (04) : 8575 - 8582
  • [8] GS-Pose: Category-Level Object Pose Estimation via Geometric and Semantic Correspondence
    Wang, Pengyuan
    Ikeda, Takuya
    Lee, Robert
    Nishiwaki, Koichi
    COMPUTER VISION - ECCV 2024, PT XXVII, 2025, 15085 : 108 - 126
  • [9] Open-Vocabulary Category-Level Object Pose and Size Estimation
    Cai, Junhao
    He, Yisheng
    Yuan, Weihao
    Zhu, Siyu
    Dong, Zilong
    Bo, Liefeng
    Chen, Qifeng
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2024, 9 (09): : 7661 - 7668
  • [10] GenPose: Generative Category-level Object Pose Estimation via Diffusion Models
    Zhang, Jiyao
    Wu, Mingdong
    Dong, Hao
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,