Deep joint learning of pathological region localization and Alzheimer's disease diagnosis

被引:3
|
作者
Park, Changhyun [1 ]
Jung, Wonsik [1 ]
Suk, Heung-Il [1 ,2 ]
机构
[1] Korea Univ, Dept Brain & Cognit Engn, Seoul 02841, South Korea
[2] Korea Univ, Dept Artificial Intelligence, Seoul 02841, South Korea
基金
新加坡国家研究基金会;
关键词
COMPUTER-AIDED DETECTION; CLASSIFICATION; DEMENTIA; FUSION;
D O I
10.1038/s41598-023-38240-4
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The identification of Alzheimer's disease (AD) using structural magnetic resonance imaging (sMRI) has been studied based on the subtle morphological changes in the brain. One of the typical approaches is a deep learning-based patch-level feature representation. For this approach, however, the predetermined patches before learning the diagnostic model can limit classification performance. To mitigate this problem, we propose the BrainBagNet with a position-based gate (PG), which applies position information of brain images represented through the 3D coordinates. Our proposed method represents the patch-level class evidence based on both MR scan and position information for image-level prediction. To validate the effectiveness of our proposed framework, we conducted comprehensive experiments comparing it with state-of-the-art methods, utilizing two publicly available datasets: the Alzheimer's Disease Neuroimaging Initiative (ADNI) and the Australian Imaging, Biomarkers and Lifestyle (AIBL) dataset. Furthermore, our experimental results demonstrate that our proposed method outperforms the existing competing methods in terms of classification performance for both AD diagnosis and mild cognitive impairment conversion prediction tasks. In addition, we performed various analyses of the results from diverse perspectives to obtain further insights into the underlying mechanisms and strengths of our proposed framework. Based on the results of our experiments, we demonstrate that our proposed framework has the potential to advance deep-learning-based patch-level feature representation studies for AD diagnosis and MCI conversion prediction. In addition, our method provides valuable insights, such as interpretability, and the ability to capture subtle changes, into the underlying pathological processes of AD and MCI, benefiting both researchers and clinicians.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Early Detection of Alzheimer's Disease: A Deep Learning Approach for Accurate Diagnosis
    Tima, Jiranuwat
    Wiratkasem, Chontee
    Chairuean, Worakarn
    Padongkit, Patcharida
    Pangkhiao, Kittamet
    Pikulkaew, Kornprom
    2024 21ST INTERNATIONAL JOINT CONFERENCE ON COMPUTER SCIENCE AND SOFTWARE ENGINEERING, JCSSE 2024, 2024, : 253 - 260
  • [32] Early Diagnosis of Alzheimer's Disease: A Neuroimaging Study with Deep Learning Architectures
    Islam, Jyoti
    Zhang, Yanqing
    PROCEEDINGS 2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW), 2018, : 1962 - 1964
  • [33] A systematic review on machine learning and deep learning techniques in the effective diagnosis of Alzheimer's disease
    Arya, Akhilesh Deep
    Verma, Sourabh Singh
    Chakarabarti, Prasun
    Chakrabarti, Tulika
    Elngar, Ahmed A.
    Kamali, Ali-Mohammad
    Nami, Mohammad
    BRAIN INFORMATICS, 2023, 10 (01)
  • [34] Multiclass Diagnosis of Alzheimer's Disease Analysis Using Machine Learning and Deep Learning Techniques
    Begum, Afiya Parveen
    Selvaraj, Prabha
    INTERNATIONAL JOURNAL OF IMAGE AND GRAPHICS, 2024, 24 (03)
  • [35] Conventional machine learning and deep learning in Alzheimer's disease diagnosis using neuroimaging: A review
    Zhao, Zhen
    Chuah, Joon Huang
    Lai, Khin Wee
    Chow, Chee-Onn
    Gochoo, Munkhjargal
    Dhanalakshmi, Samiappan
    Wang, Na
    Bao, Wei
    Wu, Xiang
    FRONTIERS IN COMPUTATIONAL NEUROSCIENCE, 2023, 17
  • [36] JOINT ASSOCIATION DISCOVERY AND DIAGNOSIS OF ALZHEIMER'S DISEASE BY SUPERVISED HETEROGENEOUS MULTIVIEW LEARNING
    Zhe, Shandian
    Xu, Zenglin
    Qi, Yuan
    Yu, Peng
    PACIFIC SYMPOSIUM ON BIOCOMPUTING 2014, 2014, : 300 - 311
  • [37] A Survey of Deep Learning for Alzheimer's Disease
    Zhou, Qinghua
    Wang, Jiaji
    Yu, Xiang
    Wang, Shuihua
    Zhang, Yudong
    MACHINE LEARNING AND KNOWLEDGE EXTRACTION, 2023, 5 (02): : 611 - 668
  • [38] Joint Classification and Regression via Deep Multi-Task Multi-Channel Learning for Alzheimer's Disease Diagnosis
    Liu, Mingxia
    Zhang, Jun
    Adeli, Ehsan
    Shen, Dinggang
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2019, 66 (05) : 1195 - 1206
  • [39] Deep Learning Applications in MRI-Based Detection of the Hippocampal Region for Alzheimer's Diagnosis
    Pusparani, Yori
    Lin, Chih-Yang
    Jan, Yih-Kuen
    Lin, Fu-Yu
    Liau, Ben-Yi
    Ardhianto, Peter
    Furqon, Elvin Nur
    Alex, John Sahaya Rani
    Aparajeeta, Jeetashree
    Lung, Chi-Wen
    IEEE ACCESS, 2024, 12 : 103830 - 103838
  • [40] A deep learning model for Alzheimer's disease diagnosis based on patient clinical records
    Avila-Jimenez, J. L.
    Canton-Habas, Vanesa
    Carrera-Gonzalez, Maria del Pilar
    Rich-Ruiz, Manuel
    Ventura, Sebastian
    COMPUTERS IN BIOLOGY AND MEDICINE, 2024, 169