Deep joint learning of pathological region localization and Alzheimer's disease diagnosis

被引:3
|
作者
Park, Changhyun [1 ]
Jung, Wonsik [1 ]
Suk, Heung-Il [1 ,2 ]
机构
[1] Korea Univ, Dept Brain & Cognit Engn, Seoul 02841, South Korea
[2] Korea Univ, Dept Artificial Intelligence, Seoul 02841, South Korea
基金
新加坡国家研究基金会;
关键词
COMPUTER-AIDED DETECTION; CLASSIFICATION; DEMENTIA; FUSION;
D O I
10.1038/s41598-023-38240-4
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The identification of Alzheimer's disease (AD) using structural magnetic resonance imaging (sMRI) has been studied based on the subtle morphological changes in the brain. One of the typical approaches is a deep learning-based patch-level feature representation. For this approach, however, the predetermined patches before learning the diagnostic model can limit classification performance. To mitigate this problem, we propose the BrainBagNet with a position-based gate (PG), which applies position information of brain images represented through the 3D coordinates. Our proposed method represents the patch-level class evidence based on both MR scan and position information for image-level prediction. To validate the effectiveness of our proposed framework, we conducted comprehensive experiments comparing it with state-of-the-art methods, utilizing two publicly available datasets: the Alzheimer's Disease Neuroimaging Initiative (ADNI) and the Australian Imaging, Biomarkers and Lifestyle (AIBL) dataset. Furthermore, our experimental results demonstrate that our proposed method outperforms the existing competing methods in terms of classification performance for both AD diagnosis and mild cognitive impairment conversion prediction tasks. In addition, we performed various analyses of the results from diverse perspectives to obtain further insights into the underlying mechanisms and strengths of our proposed framework. Based on the results of our experiments, we demonstrate that our proposed framework has the potential to advance deep-learning-based patch-level feature representation studies for AD diagnosis and MCI conversion prediction. In addition, our method provides valuable insights, such as interpretability, and the ability to capture subtle changes, into the underlying pathological processes of AD and MCI, benefiting both researchers and clinicians.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Fallacies in the pathological confirmation of the diagnosis of Alzheimer's disease
    Bowler, JV
    Munoz, DG
    Merskey, H
    Hachinski, V
    JOURNAL OF NEUROLOGY NEUROSURGERY AND PSYCHIATRY, 1998, 64 (01): : 18 - 24
  • [22] Deep Learning for Diagnosis of Alzheimer's Disease with FDG-PET Neuroimaging
    Bastos, Jose
    Silva, Filipe
    Georgieva, Petia
    PATTERN RECOGNITION AND IMAGE ANALYSIS (IBPRIA 2022), 2022, 13256 : 95 - 107
  • [23] Automatic assessment of Alzheimer's disease diagnosis based on deep learning techniques
    Puente-Castro, Alejandro
    Fernandez-Blanco, Enrique
    Pazos, Alejandro
    Munteanu, Cristian R.
    COMPUTERS IN BIOLOGY AND MEDICINE, 2020, 120 (120)
  • [24] A deep learning framework for early diagnosis of Alzheimer’s disease on MRI images
    Doaa Ahmed Arafa
    Hossam El-Din Moustafa
    Hesham A. Ali
    Amr M. T. Ali-Eldin
    Sabry F. Saraya
    Multimedia Tools and Applications, 2024, 83 : 3767 - 3799
  • [25] Multimodal attention-based deep learning for Alzheimer's disease diagnosis
    Golovanevsky, Michal
    Eickhoff, Carsten
    Singh, Ritambhara
    JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION, 2022, 29 (12) : 2014 - 2022
  • [26] Deep learning and multimodal feature fusion for the aided diagnosis of Alzheimer's disease
    Hongfei Jia
    Huan Lao
    Neural Computing and Applications, 2022, 34 : 19585 - 19598
  • [27] Computer aided Alzheimer's disease diagnosis by an unsupervised deep learning technology
    Bi, Xiuli
    Li, Shutong
    Xiao, Bin
    Li, Yu
    Wang, Guoyin
    Ma, Xu
    NEUROCOMPUTING, 2020, 392 : 296 - 304
  • [28] Deep learning and multimodal feature fusion for the aided diagnosis of Alzheimer's disease
    Jia, Hongfei
    Lao, Huan
    NEURAL COMPUTING & APPLICATIONS, 2022, 34 (22): : 19585 - 19598
  • [29] A deep learning framework for early diagnosis of Alzheimer's disease on MRI images
    Arafa, Doaa Ahmed
    Moustafa, Hossam El-Din
    Ali, Hesham A.
    Ali-Eldin, Amr M. T.
    Saraya, Sabry F.
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (2) : 3767 - 3799
  • [30] Early diagnosis of Alzheimer's disease based on deep learning: A systematic review
    Fathi, Sina
    Ahmadi, Maryam
    Dehnad, Afsaneh
    COMPUTERS IN BIOLOGY AND MEDICINE, 2022, 146