Deep joint learning of pathological region localization and Alzheimer's disease diagnosis

被引:3
|
作者
Park, Changhyun [1 ]
Jung, Wonsik [1 ]
Suk, Heung-Il [1 ,2 ]
机构
[1] Korea Univ, Dept Brain & Cognit Engn, Seoul 02841, South Korea
[2] Korea Univ, Dept Artificial Intelligence, Seoul 02841, South Korea
基金
新加坡国家研究基金会;
关键词
COMPUTER-AIDED DETECTION; CLASSIFICATION; DEMENTIA; FUSION;
D O I
10.1038/s41598-023-38240-4
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The identification of Alzheimer's disease (AD) using structural magnetic resonance imaging (sMRI) has been studied based on the subtle morphological changes in the brain. One of the typical approaches is a deep learning-based patch-level feature representation. For this approach, however, the predetermined patches before learning the diagnostic model can limit classification performance. To mitigate this problem, we propose the BrainBagNet with a position-based gate (PG), which applies position information of brain images represented through the 3D coordinates. Our proposed method represents the patch-level class evidence based on both MR scan and position information for image-level prediction. To validate the effectiveness of our proposed framework, we conducted comprehensive experiments comparing it with state-of-the-art methods, utilizing two publicly available datasets: the Alzheimer's Disease Neuroimaging Initiative (ADNI) and the Australian Imaging, Biomarkers and Lifestyle (AIBL) dataset. Furthermore, our experimental results demonstrate that our proposed method outperforms the existing competing methods in terms of classification performance for both AD diagnosis and mild cognitive impairment conversion prediction tasks. In addition, we performed various analyses of the results from diverse perspectives to obtain further insights into the underlying mechanisms and strengths of our proposed framework. Based on the results of our experiments, we demonstrate that our proposed framework has the potential to advance deep-learning-based patch-level feature representation studies for AD diagnosis and MCI conversion prediction. In addition, our method provides valuable insights, such as interpretability, and the ability to capture subtle changes, into the underlying pathological processes of AD and MCI, benefiting both researchers and clinicians.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Deep joint learning of pathological region localization and Alzheimer’s disease diagnosis
    Changhyun Park
    Wonsik Jung
    Heung-Il Suk
    Scientific Reports, 13
  • [2] Deep joint learning diagnosis of Alzheimer's disease based on multimodal feature fusion
    Wang, Jingru
    Wen, Shipeng
    Liu, Wenjie
    Meng, Xianglian
    Jiao, Zhuqing
    BIODATA MINING, 2024, 17 (01):
  • [3] Deep Learning in the EEG Diagnosis of Alzheimer's Disease
    Zhao, Yilu
    He, Lianghua
    COMPUTER VISION - ACCV 2014 WORKSHOPS, PT I, 2015, 9008 : 340 - 353
  • [4] Deep learning for Alzheimer's disease diagnosis: A survey
    Khojaste-Sarakhsi, M.
    Haghighi, Seyedhamidreza Shahabi
    Ghomi, S. M. T. Fatemi
    Marchiori, Elena
    ARTIFICIAL INTELLIGENCE IN MEDICINE, 2022, 130
  • [5] EARLY DIAGNOSIS OF ALZHEIMER'S DISEASE WITH DEEP LEARNING
    Liu, Siqi
    Liu, Sidong
    Cai, Weidong
    Pujol, Sonia
    Kikinis, Ron
    Feng, Dagan
    2014 IEEE 11TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2014, : 1015 - 1018
  • [6] Early Diagnosis of Alzheimer's Disease Using Deep Learning
    Ji, Huanhuan
    Liu, Zhenbing
    Yan, Wei Qi
    Klette, Reinhard
    ICCCV 2019: PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON CONTROL AND COMPUTER VISION, 2019, : 87 - 91
  • [7] Application of Deep Learning in Classification and Diagnosis of Alzheimer’s Disease
    Du, Yuzheng
    Cao, Hui
    Nie, Yongqi
    Wei, Dejian
    Feng, Yanyan
    Computer Engineering and Applications, 2024, 59 (03) : 49 - 65
  • [8] Deep Learning-Based Diagnosis of Alzheimer's Disease
    Saleem, Tausifa Jan
    Zahra, Syed Rameem
    Wu, Fan
    Alwakeel, Ahmed
    Alwakeel, Mohammed
    Jeribi, Fathe
    Hijji, Mohammad
    JOURNAL OF PERSONALIZED MEDICINE, 2022, 12 (05):
  • [9] Deep and joint learning of longitudinal data for Alzheimer's disease prediction
    Lei, Baiying
    Yang, Mengya
    Yang, Peng
    Zhou, Feng
    Hou, Wen
    Zou, Wenbin
    Li, Xia
    Wang, Tianfu
    Xiao, Xiaohua
    Wang, Shuqiang
    PATTERN RECOGNITION, 2020, 102 (102)
  • [10] Application of Deep Learning in the Diagnosis of Alzheimer's and Parkinson's Disease: A Review
    Suganya, Asokan
    Aarthy, Seshadri Lakshminarayanan
    CURRENT MEDICAL IMAGING, 2024, 20