Odd Cosserat elasticity in active materials

被引:8
|
作者
Surowka, Piotr [1 ,2 ,3 ]
Souslov, Anton [4 ]
Juelicher, Frank [2 ,5 ]
Banerjee, Debarghya [2 ,6 ]
机构
[1] Wroclaw Univ Sci & Technol, Inst Theoret Phys, PL-50370 Wroclaw, Poland
[2] Max Planck Inst Phys Komplexer Syst, Nothnitzer Str 38, D-01187 Dresden, Germany
[3] Wurzburg Dresden Cluster Excellence Ct Qmat, D-97074 Wurzburg, Germany
[4] Univ Bath, Dept Phys, Claverton Down, Bath BA2 7AY, England
[5] Tech Univ Dresden, Cluster Excellence Phys Life, D-01062 Dresden, Germany
[6] Univ Gottingen, Inst Theoret Phys, Friedrich Hund Pl 1, D-37077 Gottingen, Germany
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1103/PhysRevE.108.064609
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Stress-strain constitutive relations in solids with an internal angular degree of freedom can be modeled using Cosserat (also called micropolar) elasticity. In this paper, we explore Cosserat materials that include chiral active components and hence odd elasticity. We calculate static elastic properties and show that the static response to rotational stresses leads to strains that depend on both Cosserat and odd elasticity. We compute the dispersion relations in odd Cosserat materials in the overdamped regime and find the presence of exceptional points. These exceptional points create a sharp boundary between a Cosserat-dominated regime of complete wave attenuation and an odd-elasticity-dominated regime of propagating waves. We conclude by showing the effect of Cosserat and odd-elasticity terms on the polarization of Rayleigh surface waves.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] The Cosserat Elasticity Constants of Circular Cell Honeycombs
    Chung, Jaeung
    Waas, Anthony M.
    MULTI-FUNCTIONAL MATERIALS AND STRUCTURES III, PTS 1 AND 2, 2010, 123-125 : 264 - +
  • [32] SINGULAR STRESS CONCENTRATIONS IN PLANE COSSERAT ELASTICITY
    COWIN, SC
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1969, 20 (06): : 979 - &
  • [33] Finite element method in plane Cosserat elasticity
    Providas, E
    Kattis, MA
    COMPUTERS & STRUCTURES, 2002, 80 (27-30) : 2059 - 2069
  • [34] AXISYMMETRIC STRESS CONCENTRATION PROBLEMS IN COSSERAT ELASTICITY
    PURI, P
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1971, 22 (02): : 320 - &
  • [35] Odd elasticity and topological waves in active surfaces (Vol 109, 024608, 2024)
    Fossati, Michele
    Scheibner, Colin
    Fruchart, Michel
    Vitelli, Vincenzo
    PHYSICAL REVIEW E, 2024, 109 (05)
  • [36] Odd Elasticity of a Catalytic Micromachine
    Kobayashi, Akira
    Yasuda, Kento
    Ishimoto, Kenta
    Lin, Li-Shing
    Sou, Isamu
    Hosaka, Yuto
    Komura, Shigeyuki
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2023, 92 (07)
  • [37] Homogenization of the equations of the Cosserat theory of elasticity of inhomogeneous bodies
    Gorbachev, V. I.
    Emel'yanov, A. N.
    MECHANICS OF SOLIDS, 2014, 49 (01) : 73 - 82
  • [38] COSSERAT ELASTICITY OF OCTET TRUSS TITANIUM ALLOY LATTICES
    Goyal, Karan
    Rueger, Zachariah
    Davis, Evan
    Lakes, Roderic S.
    JOURNAL OF MECHANICS OF MATERIALS AND STRUCTURES, 2021, 16 (05) : 645 - 654
  • [39] Homogenization of the equations of the Cosserat theory of elasticity of inhomogeneous bodies
    V. I. Gorbachev
    A. N. Emel’yanov
    Mechanics of Solids, 2014, 49 : 73 - 82
  • [40] Experimental tests of rotation sensitivity in Cosserat elasticity and in gravitation
    R. S. Lakes
    Zeitschrift für angewandte Mathematik und Physik, 2021, 72