Odd Cosserat elasticity in active materials

被引:8
|
作者
Surowka, Piotr [1 ,2 ,3 ]
Souslov, Anton [4 ]
Juelicher, Frank [2 ,5 ]
Banerjee, Debarghya [2 ,6 ]
机构
[1] Wroclaw Univ Sci & Technol, Inst Theoret Phys, PL-50370 Wroclaw, Poland
[2] Max Planck Inst Phys Komplexer Syst, Nothnitzer Str 38, D-01187 Dresden, Germany
[3] Wurzburg Dresden Cluster Excellence Ct Qmat, D-97074 Wurzburg, Germany
[4] Univ Bath, Dept Phys, Claverton Down, Bath BA2 7AY, England
[5] Tech Univ Dresden, Cluster Excellence Phys Life, D-01062 Dresden, Germany
[6] Univ Gottingen, Inst Theoret Phys, Friedrich Hund Pl 1, D-37077 Gottingen, Germany
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1103/PhysRevE.108.064609
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Stress-strain constitutive relations in solids with an internal angular degree of freedom can be modeled using Cosserat (also called micropolar) elasticity. In this paper, we explore Cosserat materials that include chiral active components and hence odd elasticity. We calculate static elastic properties and show that the static response to rotational stresses leads to strains that depend on both Cosserat and odd elasticity. We compute the dispersion relations in odd Cosserat materials in the overdamped regime and find the presence of exceptional points. These exceptional points create a sharp boundary between a Cosserat-dominated regime of complete wave attenuation and an odd-elasticity-dominated regime of propagating waves. We conclude by showing the effect of Cosserat and odd-elasticity terms on the polarization of Rayleigh surface waves.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Stress invariance in planar Cosserat elasticity
    Proc R Soc London Ser A, 1942 (453-470):
  • [22] Finite element method for Cosserat elasticity
    Providas, E
    Kattis, MA
    COMPUTATIONAL TECHNIQUES FOR MATERIALS, COMPOSITES AND COMPOSITE STRUCTURES, 2000, : 47 - 56
  • [23] Cosserat (micropolar) elasticity in Stroh form
    Lazar, M
    Kirchner, HOK
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2005, 42 (20) : 5377 - 5398
  • [24] On duality between Cosserat elasticity and fractons
    Gromov, Andrey
    Surowka, Piotr
    SCIPOST PHYSICS, 2020, 8 (04):
  • [25] Exotic buckling patterns in fiber-reinforced materials: Numerical simulations of Cosserat elasticity
    Mcavoy, Ryan C.
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2025, 312
  • [26] STRESS INVARIANCE IN PLANAR COSSERAT ELASTICITY
    OSTOJA-STARZEWSKI, M
    JASIUK, I
    PROCEEDINGS OF THE ROYAL SOCIETY-MATHEMATICAL AND PHYSICAL SCIENCES, 1995, 451 (1942): : 453 - 470
  • [27] The stationary Weyl equation and Cosserat elasticity
    Chervova, Olga
    Vassiliev, Dmitri
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (33)
  • [28] Cosserat Elasticity of Helically Wound Cylinders
    McAvoy, R. C.
    Steigmann, D. J.
    JOURNAL OF ELASTICITY, 2024, 155 (1-5) : 205 - 220
  • [29] The Cosserat spectrum in the theory of elasticity and applications
    Markenscoff, X
    Paukshto, M
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1998, 454 (1970): : 631 - 643
  • [30] MASS LAWS OF NONLINEAR COSSERAT ELASTICITY THEORY
    BESDO, D
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1972, 52 (04): : T122 - &