Multilayer structure solid-state electrolyte composite membranes for long-life quasi-solid-state battery

被引:4
|
作者
Tang, Jiantao [1 ]
Wang, Leidanyang [5 ]
Tian, Changhao [1 ]
Huang, Tao [2 ]
Zhang, Jingjing [4 ]
Zeng, Lecai [3 ]
Yu, Aishui [1 ,2 ]
机构
[1] Fudan Univ, Inst New Energy, Collaborat Innovat Ctr Chem Energy Mat, Dept Chem,Shanghai Key Lab Mol Catalysis & Innovat, Shanghai 200438, Peoples R China
[2] Fudan Univ, Lab Adv Mat, Shanghai 200438, Peoples R China
[3] Shanghai Elect Grp Co Ltd, 960 Zhongxing Rd, Shanghai 200070, Peoples R China
[4] Donghua Univ, Coll Mat Sci & Engn, State Key Lab Modificat Chem Fibers & Polymer Mat, Shanghai 201620, Peoples R China
[5] SES Shanghai Co Ltd, 1581 Zhaoxian Rd, Shanghai 201821, Peoples R China
基金
中国国家自然科学基金;
关键词
Composite solid electrolyte membranes; Interfacial design; Liquid electrolyte; LiNi; 0; 6; Co; 2; Mn; O; cathode; Quasi-solid-state battery; HIGH-VOLTAGE; LITHIUM BATTERIES; CATHODE MATERIAL; METAL BATTERIES; INTERFACE; STABILITY; PROGRESS; ANODE;
D O I
10.1016/j.jallcom.2023.170736
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
To reduce the impedance of the interface between solid electrolytes and electrodes and improve the in-terfacial stability, the liquid electrolyte (LE) is added between solid-state electrolytes and electrodes. We design LE containing different lithium salts, additives and a solid-state electrolyte membrane containing polyvinylidene fluoride (PVDF), Li1.3Al0.3Ti1.7(PO4)3 (LATP) and polypropylene membrane (PP) (LATP mem-brane), and systematically investigate the interfacial wettability, stability and safety through contact angle analysis, interfacial impedance measurements, and linear scanning voltammetry. The results show that the LE containing 1 M lithium hexafluorophosphate (LiPF6) salt, 1.3-propane sultone (1.3-PS) additive, adipo-nitrile, fluoroethylene carbonate (FEC), and that containing 0.575 M lithium bis(trifluoromethane sulfoni-mide) (LiTFSI)/0.575 M LiPF6 salt, trimethyl phosphate, FEC, and PS exhibit superior performance. The interfacial impedance of the Li|LE-LATP membrane-LE|Li coin cell is only-50 & omega;. The LiNi0.6Co0.2Mn0.2O2 (NCM622)|LE-LATP membrane-LE|Si/C coin cell exhibits an initial specific discharge capacity of-163 mAh g-1 at 0.5 C and 25 & DEG;C, and the capacity retention rate is-87% after 100 cycles. Furthermore, the 5 Ah NCM622|LE-LATP membrane-LE|Si/C pouch battery exhibits a capacity retention rate of > 90% after 400 cycles at 25 & DEG;C and 1 C.& COPY; 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] PERFORMANCE OF A SOLID-STATE BATTERY WITH A PROTON CONDUCTING ELECTROLYTE
    SINGH, K
    TIWARI, RU
    DESHPANDE, VK
    JOURNAL OF POWER SOURCES, 1993, 46 (01) : 65 - 71
  • [42] A Ceramic Rich Quaternary Composite Solid-State Electrolyte for Solid-State Lithium Metal Batteries
    Al-Salih, Hilal
    Cui, Mengyang
    Yim, Chae-Ho
    Sadighi, Zoya
    Yan, Shuo
    Karkar, Zouina
    Goward, Gillian R.
    Baranova, Elena A.
    Abu-Lebdeh, Yaser
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2022, 169 (08)
  • [43] In-Situ Intermolecular Interaction in Composite Polymer Electrolyte for Ultralong Life Quasi-Solid-State Lithium Metal Batteries
    He, Kangqiang
    Cheng, Samson Ho-Sum
    Hu, Jieying
    Zhang, Yangqian
    Yang, Huiwen
    Liu, Yingying
    Liao, Wenchao
    Chen, Dazhu
    Liao, Chengzhu
    Cheng, Xin
    Lu, Zhouguang
    He, Jun
    Tang, Jiaoning
    Li, Robert K. Y.
    Liu, Chen
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2021, 60 (21) : 12116 - 12123
  • [44] Erratum to: Nanocomposite quasi-solid-state electrolyte for highsafety lithium batteries
    Hyunji Choi
    Hyun Woo Kim
    Jae-Kwang Kim
    Young Jun Lim
    Youngsik Kim
    Jou-Hyeon Ahn
    Nano Research, 2017, 10 : 3619 - 3619
  • [45] Alkali-Resistant Quasi-Solid-State Electrolyte for Stretchable Supercapacitors
    Tang, Qianqiu
    Wang, Wenqiang
    Wang, Gengchao
    ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (41) : 27701 - 27709
  • [46] Flexible, solid-state, fiber-network-reinforced composite solid electrolyte for long lifespan solid lithium-sulfurized polyacrylonitrile battery
    Shiqiang Luo
    Enyou Zhao
    Yixuan Gu
    Nagahiro Saito
    Zhengxi Zhang
    Li Yang
    Shin-ichi Hirano
    Nano Research, 2022, 15 : 3290 - 3298
  • [47] Toward a Safe and High Performance Quasi-Solid-State Structural Battery
    Chan, Kwok Kiong
    Lim, Gwendolyn Jia Hao
    Sutrisnoh, Nur Ayu Afira
    Raju, Karthikayen
    Srinivasan, Madhavi
    ACS APPLIED ENERGY MATERIALS, 2024, 7 (20): : 9098 - 9109
  • [48] A high-performance rechargeable Li–O2 battery with quasi-solid-state electrolyte
    彭佳悦
    黄杰
    李文俊
    王怡
    禹习谦
    胡勇胜
    陈立泉
    李泓
    Chinese Physics B, 2018, 27 (07) : 561 - 565
  • [49] Composite solid-state electrolyte based on hybrid poly(ethylene glycol)-silica fillers enabling long-life lithium metal batteries
    Mezzomo, Lorenzo
    Bonato, Stefano
    Mostoni, Silvia
    Di Credico, Barbara
    Scotti, Roberto
    D'Arienzo, Massimiliano
    Mustarelli, Piercarlo
    Ruffo, Riccardo
    ELECTROCHIMICA ACTA, 2022, 411
  • [50] Application of quasi-solid-state silica nanoparticles-ionic liquid composite electrolytes to all-solid-state lithium secondary battery
    Ito, Seitaro
    Unemoto, Atsushi
    Ogawa, Hideyuki
    Tomai, Takaaki
    Honma, Itaru
    JOURNAL OF POWER SOURCES, 2012, 208 : 271 - 275