Multilayer structure solid-state electrolyte composite membranes for long-life quasi-solid-state battery

被引:4
|
作者
Tang, Jiantao [1 ]
Wang, Leidanyang [5 ]
Tian, Changhao [1 ]
Huang, Tao [2 ]
Zhang, Jingjing [4 ]
Zeng, Lecai [3 ]
Yu, Aishui [1 ,2 ]
机构
[1] Fudan Univ, Inst New Energy, Collaborat Innovat Ctr Chem Energy Mat, Dept Chem,Shanghai Key Lab Mol Catalysis & Innovat, Shanghai 200438, Peoples R China
[2] Fudan Univ, Lab Adv Mat, Shanghai 200438, Peoples R China
[3] Shanghai Elect Grp Co Ltd, 960 Zhongxing Rd, Shanghai 200070, Peoples R China
[4] Donghua Univ, Coll Mat Sci & Engn, State Key Lab Modificat Chem Fibers & Polymer Mat, Shanghai 201620, Peoples R China
[5] SES Shanghai Co Ltd, 1581 Zhaoxian Rd, Shanghai 201821, Peoples R China
基金
中国国家自然科学基金;
关键词
Composite solid electrolyte membranes; Interfacial design; Liquid electrolyte; LiNi; 0; 6; Co; 2; Mn; O; cathode; Quasi-solid-state battery; HIGH-VOLTAGE; LITHIUM BATTERIES; CATHODE MATERIAL; METAL BATTERIES; INTERFACE; STABILITY; PROGRESS; ANODE;
D O I
10.1016/j.jallcom.2023.170736
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
To reduce the impedance of the interface between solid electrolytes and electrodes and improve the in-terfacial stability, the liquid electrolyte (LE) is added between solid-state electrolytes and electrodes. We design LE containing different lithium salts, additives and a solid-state electrolyte membrane containing polyvinylidene fluoride (PVDF), Li1.3Al0.3Ti1.7(PO4)3 (LATP) and polypropylene membrane (PP) (LATP mem-brane), and systematically investigate the interfacial wettability, stability and safety through contact angle analysis, interfacial impedance measurements, and linear scanning voltammetry. The results show that the LE containing 1 M lithium hexafluorophosphate (LiPF6) salt, 1.3-propane sultone (1.3-PS) additive, adipo-nitrile, fluoroethylene carbonate (FEC), and that containing 0.575 M lithium bis(trifluoromethane sulfoni-mide) (LiTFSI)/0.575 M LiPF6 salt, trimethyl phosphate, FEC, and PS exhibit superior performance. The interfacial impedance of the Li|LE-LATP membrane-LE|Li coin cell is only-50 & omega;. The LiNi0.6Co0.2Mn0.2O2 (NCM622)|LE-LATP membrane-LE|Si/C coin cell exhibits an initial specific discharge capacity of-163 mAh g-1 at 0.5 C and 25 & DEG;C, and the capacity retention rate is-87% after 100 cycles. Furthermore, the 5 Ah NCM622|LE-LATP membrane-LE|Si/C pouch battery exhibits a capacity retention rate of > 90% after 400 cycles at 25 & DEG;C and 1 C.& COPY; 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Bilayer solid electrolyte enabling quasi-solid-state lithium-metal batteries
    Wu, Fanglin
    Fang, Shan
    Kuenzel, Matthias
    Diemant, Thomas
    Kim, Jae-Kwang
    Bresser, Dominic
    Kim, Guk-Tae
    Passerini, Stefano
    JOURNAL OF POWER SOURCES, 2023, 557
  • [32] Interfacial phenomena in solid-state lithium battery with sulfide solid electrolyte
    Takada, Kazunori
    Ohta, Narumi
    Zhang, Lianqi
    Xu, Xiaoxiong
    Bui Thi Hang
    Ohnishi, Tsuyoshi
    Osada, Minoru
    Sasaki, Takayoshi
    SOLID STATE IONICS, 2012, 225 : 594 - 597
  • [33] The intermolecular interaction enables ordered ion transport in quasi-solid-state electrolyte for ultra-long life lithium-metal battery
    Ou, Chuan
    Ye, Siyang
    Li, Zhaojie
    Zheng, Xueying
    Tian, Fei
    Lei, Danni
    Wang, Chengxin
    ENERGY STORAGE MATERIALS, 2024, 67
  • [34] Understanding the battery safety improvement enabled by a quasi-solid-state battery design
    甘露雨
    陈汝颂
    禹习谦
    李泓
    Chinese Physics B, 2022, (11) : 50 - 55
  • [35] Understanding the battery safety improvement enabled by a quasi-solid-state battery design
    Gan, Luyu
    Chen, Rusong
    Yu, Xiqian
    Li, Hong
    CHINESE PHYSICS B, 2022, 31 (11)
  • [36] Long-Life Quasi-Solid-State Anode-Free Batteries Enabled by Li Compensation Coupled Interface Engineering
    Liu, Yuzhao
    Meng, Xiangyu
    Shi, Yu
    Qiu, Jieshan
    Wang, Zhiyu
    ADVANCED MATERIALS, 2023, 35 (42)
  • [37] Rechargeable solid-state battery using a proton-conducting composite as electrolyte
    Lakshmi, N
    Chandra, S
    JOURNAL OF POWER SOURCES, 2002, 108 (1-2) : 256 - 260
  • [38] Ionic liquid/ether-plasticized quasi-solid-state electrolytes for long-life lithium-oxygen cells
    Zhu, Chongjia
    Sun, Qiushi
    Xie, Jian
    Jin, Yuan
    Wang, Kangyan
    Chen, Zhen
    Tu, Jian
    Cao, Gaoshao
    Zhao, Xinbing
    NEW JOURNAL OF CHEMISTRY, 2018, 42 (24) : 19521 - 19527
  • [39] BiOI Nanopaper As a High-Capacity, Long-Life and Insertion-Type Anode for a Flexible Quasi-Solid-State Zn-Ion Battery
    Zhang, Qing
    Duan, Tengfei
    Xiao, Manjun
    Pei, Yong
    Wang, Xianyou
    Zhi, Chunyi
    Wu, Xiongwei
    Long, Bei
    Wu, Yuping
    ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (22) : 25516 - 25523
  • [40] Visualizing Chemomechanical Degradation of a Solid-State Battery Electrolyte
    Tippens, Jared
    Miers, John C.
    Afshar, Arman
    Lewis, John A.
    Cortes, Francisco Javier Quintero
    Qiao, Haipeng
    Marchese, Thomas S.
    Di Leo, Claudio V.
    Saldana, Christopher
    McDowell, Matthew T.
    ACS ENERGY LETTERS, 2019, 4 (06) : 1475 - 1483