Non-Enzymatic CO3O4 Nanostructure-Based Electrochemical Sensor for H2O2 Detection

被引:2
|
作者
Mizers, V. [1 ]
Gerbreders, V. [1 ]
Krasovska, M. [1 ]
Sledevskis, E. [1 ]
Mihailova, I. [1 ]
Ogurcovs, A. [1 ,2 ]
Bulanovs, A. [1 ]
Gerbreders, A. [2 ]
机构
[1] Daugavpils Univ, Inst Life Sci & Technol, G Liberts Innovat Microscopy Ctr, Dept Technol, 1a Parades Str, LV-5401 Daugavpils, Latvia
[2] Univ Latvia, Inst Solid State Phys, 8 Kengaraga Str, LV-1063 Riga, Latvia
关键词
Electrochemical sensor; cobalt oxide; cyclic voltammetry; hydrogen peroxide; nanostructures; GRAPHENE OXIDE NANOCOMPOSITE; HYDROGEN-PEROXIDE H2O2; NANOPARTICLES; WATER; PERFORMANCE; MORPHOLOGY; ELECTRODE; SYSTEM; AU;
D O I
10.2478/lpts-2023-0037
中图分类号
O59 [应用物理学];
学科分类号
摘要
This article describes the synthesis of nanostructured cobalt oxide on iron wires and its application for the detection of hydrogen peroxide as working electrode for non-enzymatic electrochemical sensor. Cobalt oxide was obtained by the hydrothermal synthesis method using chloride and acetate anions. The resulting nanostructured coating obtained from the chloride precursor is a uniform homogeneous porous network of long nanofibers assembled into regular honey & scy;omb-like formations. In the case of an acetate precursor, instead of nanofibers, petal-like nanostructures assembled into honeycomb agglomerates are observed. The structure, surface, and composition of the obtained samples were studied using field-emission scanning electron microscopy along with energy-dispersive spectroscopy and X-ray diffractometry.The resultant nanostructured specimens were utilized to detect H2O2 electrochemically through cyclic voltammetry, differential pulse voltammetry, and i-t measurements. A comparative research has demonstrated that the nanostructures produced from the chloride precursor exhibit greater sensitivity to H2O2 and have a more appropriate morphology for designing a nanostructured sensor. A substantial linear correlation between the peak current and H2O2 concentration within the 20 to 1300 mu M range was established. The Co3O(4) electrode obtained exhibits a sensitivity of 505.11 mu A<middle dot>mM(-1), and the electroactive surface area is calculated to be 4.684 cm(2). Assuming a signal-to-noise ratio of 3, the calculated limit of detection is 1.05 mu M. According to the interference study, the prevalent interfering agents, such as ascorbic acid, uric acid, NaCl, and glucose, do not influence the electrochemical reaction. The obtained results confirm that this sensor is suitable for working with complex analytes.The actual sample assessment demonstrated a recovery rate exceeding 95 %.
引用
收藏
页码:63 / 84
页数:22
相关论文
共 50 条
  • [21] A sensitive non-enzymatic electrochemical glucose sensor based on a ZnO/Co3O4/reduced graphene oxide nanocomposite
    Hussein, Beshir A.
    Tsegaye, Abebaw A.
    Shifera, Getabalew
    M. Taddesse, Abi
    SENSORS & DIAGNOSTICS, 2023, 2 (02): : 347 - 360
  • [22] Non-enzymatic Amperometric Sensor for H2O2 Based on MnCO3 Thin Film Electrodes
    Stojkovikj, Sasho
    Najdoski, Metodija
    Sefer, Birhan
    Mirceski, Valentin
    CROATICA CHEMICA ACTA, 2018, 91 (04) : 567 - 575
  • [23] Electroless plating of copper nanoparticles on PET fiber for non-enzymatic electrochemical detection of H2O2
    Kim, Eunju
    Arul, Narayanasamy Sabari
    Yang, Liu
    Han, Jeong In
    RSC ADVANCES, 2015, 5 (94): : 76729 - 76732
  • [24] Fabrication of non-enzymatic sensor using Co doped ZnO nanoparticles as a marker of H2O2
    Khan, Sher Bahadar
    Rahman, Mohammed M.
    Asiri, Abdullah M.
    Bin Asif, Safi Asim
    Al-Qarni, Sara Abdullah S.
    Al-Sehemi, Abdullah G.
    Al-Sayari, Saleh A.
    Al-Assiri, Mohammad Sultan
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2014, 62 : 21 - 27
  • [25] Fabrication of Co3O4/NiCo2O4 Nanocomposite for Detection of H2O2 and Dopamine
    Liu, Tianjiao
    Zhang, Xiaoyuan
    Fu, Kun
    Zhou, Nan
    Xiong, Jinping
    Su, Zhiqiang
    BIOSENSORS-BASEL, 2021, 11 (11):
  • [26] Synthesis and characterization of Co3O4 ultra-nanosheets and Co3O4 ultra-nanosheet-Ni(OH)2 as non-enzymatic electrochemical sensors for glucose detection
    Mahmoudian, M. R.
    Basirun, W. J.
    Woi, Pei Meng
    Sookhakian, M.
    Yousefi, Ramin
    Ghadimi, H.
    Alias, Y.
    MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2016, 59 : 500 - 508
  • [27] Translating potentiometric detection into non-enzymatic amperometric measurement of H2O2
    Yin, Tanji
    Wang, Hemin
    Li, Jinghui
    Yuan, Baiqing
    Qin, Wei
    TALANTA, 2021, 232
  • [28] Porous Co3O4 nanosheets as a high-performance non-enzymatic sensor for glucose detection
    Fuyan Liu
    Peng Wang
    Qianqian Zhang
    Zeyan Wang
    Yuanyuan Liu
    Zhaoke Zheng
    Xiaoyan Qin
    Xiaoyang Zhang
    Ying Dai
    Lu Li
    Baibiao Huang
    Analytical and Bioanalytical Chemistry, 2018, 410 : 7663 - 7670
  • [29] Porous Co3O4 nanosheets as a high-performance non-enzymatic sensor for glucose detection
    Liu, Fuyan
    Wang, Peng
    Zhang, Qianqian
    Wang, Zeyan
    Liu, Yuanyuan
    Zheng, Zhaoke
    Qin, Xiaoyan
    Zhang, Xiaoyang
    Dai, Ying
    Li, Lu
    Huang, Baibiao
    ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2018, 410 (29) : 7663 - 7670
  • [30] A non-enzymatic sensor based on Au@Ag nanoparticles with good stability for sensitive detection of H2O2
    Li, Zhi
    Zheng, Xiaohui
    Zheng, Jianbin
    NEW JOURNAL OF CHEMISTRY, 2016, 40 (03) : 2115 - 2120