Integrated data-driven modeling and experimental optimization of granular hydrogel matrices

被引:21
|
作者
Verheyen, Connor A. [1 ,2 ,3 ]
Uzel, Sebastien G. M. [3 ]
Kurum, Armand [3 ,4 ]
Roche, Ellen T. [1 ,5 ]
Lewis, Jennifer A. [4 ]
机构
[1] Harvard MIT Program Hlth Sci & Technol, Cambridge, MA 02139 USA
[2] MIT, Inst Med Engn & Sci, Cambridge, MA 02139 USA
[3] Harvard Univ, Wyss Inst Biol Inspired Engn, Cambridge, MA 02138 USA
[4] Harvard Univ, John A Paulson Sch Engn & Appl Sci, Cambridge, MA 02138 USA
[5] MIT, Dept Mech Engn, Cambridge, MA 02139 USA
基金
美国国家科学基金会;
关键词
complex material system; robust model selection; granular matrices; complex; MATERIALS DISCOVERY; DESIGN; SUSPENSIONS; MICROGELS; RHEOLOGY; SIZE; FLOW;
D O I
10.1016/j.matt.2023.01.011
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Granular hydrogel matrices have emerged as promising candidates for cell encapsulation, bioprinting, and tissue engineering. How-ever, it remains challenging to design and optimize these materials given their broad compositional and processing parameter space. Here, we combine experimentation and computation to create granular matrices composed of alginate-based bioblocks with controlled structure, rheological properties, and injectability pro-files. A custom machine learning pipeline is applied after each phase of experimentation to automatically map the multidimensional input-output patterns into condensed data-driven models. These models are used to assess generalizable predictability and define high-level design rules to guide subsequent phases of development and characterization. Our integrated, modular approach opens new avenues to understanding and controlling the behavior of complex soft materials.
引用
收藏
页码:1015 / 1036
页数:23
相关论文
共 50 条
  • [41] Data-driven surrogate modeling and optimization of supercritical jet into supersonic crossflow
    Siyu DING
    Longfei WANG
    Qingzhou LU
    Xingjian WANG
    Chinese Journal of Aeronautics, 2024, 37 (12) : 139 - 155
  • [42] Data-Driven Modeling and Optimization of Building Energy Consumption: a Case Study
    Grover, Divas
    Fallah, Yaser P.
    Zhou, Qun
    LaHiff, P. E. Ian
    2020 IEEE POWER & ENERGY SOCIETY GENERAL MEETING (PESGM), 2020,
  • [43] Modeling and control system optimization for electrified vehicles: A data-driven approach
    Zhang, Hao
    Lei, Nuo
    Chen, Boli
    Li, Bingbing
    Li, Rulong
    Wang, Zhi
    ENERGY, 2024, 310
  • [44] Consensus Modeling with Asymmetric Cost Based on Data-Driven Robust Optimization
    Shaojian Qu
    Yefan Han
    Zhong Wu
    Hassan Raza
    Group Decision and Negotiation, 2021, 30 : 1395 - 1432
  • [45] Data-driven Uncertain Modeling and Optimization Approach for Heterogeneous Network Systems
    Wang, Hai
    Jiang, Hao
    Wu, Jing
    2019 IEEE 5TH INTL CONFERENCE ON BIG DATA SECURITY ON CLOUD (BIGDATASECURITY) / IEEE INTL CONFERENCE ON HIGH PERFORMANCE AND SMART COMPUTING (HPSC) / IEEE INTL CONFERENCE ON INTELLIGENT DATA AND SECURITY (IDS), 2019, : 119 - 125
  • [46] EXPERIMENTAL STUDY AND MODULAR MODELING OF MAGNETOSTRICTIVE HYSTERESIS WITH DATA-DRIVEN APPROACH
    Yi, Sicheng
    Chen, Hao
    Jiang, Zhan
    Zhang, Quan
    2022 16TH SYMPOSIUM ON PIEZOELECTRICITY, ACOUSTIC WAVES, AND DEVICE APPLICATIONS, SPAWDA, 2022, : 109 - 113
  • [47] Data Valuation From Data-Driven Optimization
    Mieth, Robert
    Morales, Juan M.
    Poor, H. Vincent
    IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, 2025, 12 (01): : 954 - 966
  • [48] Data-Driven Optimization of Integrated Control Framework for Flexible Motion Control System
    Jung, Hanul
    Oh, Sehoon
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2022, 18 (07) : 4762 - 4772
  • [49] An Integrated Data-Driven Methodology for Auditor Performance Appraisals and Auditor Assignment Optimization
    Wang, Tzu-Chien
    NTU MANAGEMENT REVIEW, 2023, 33 (01): : 1 - 38
  • [50] Efficient data-driven optimization with noisy data
    Parys, Bart P. G. Van
    OPERATIONS RESEARCH LETTERS, 2024, 54