Integrated data-driven modeling and experimental optimization of granular hydrogel matrices

被引:21
|
作者
Verheyen, Connor A. [1 ,2 ,3 ]
Uzel, Sebastien G. M. [3 ]
Kurum, Armand [3 ,4 ]
Roche, Ellen T. [1 ,5 ]
Lewis, Jennifer A. [4 ]
机构
[1] Harvard MIT Program Hlth Sci & Technol, Cambridge, MA 02139 USA
[2] MIT, Inst Med Engn & Sci, Cambridge, MA 02139 USA
[3] Harvard Univ, Wyss Inst Biol Inspired Engn, Cambridge, MA 02138 USA
[4] Harvard Univ, John A Paulson Sch Engn & Appl Sci, Cambridge, MA 02138 USA
[5] MIT, Dept Mech Engn, Cambridge, MA 02139 USA
基金
美国国家科学基金会;
关键词
complex material system; robust model selection; granular matrices; complex; MATERIALS DISCOVERY; DESIGN; SUSPENSIONS; MICROGELS; RHEOLOGY; SIZE; FLOW;
D O I
10.1016/j.matt.2023.01.011
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Granular hydrogel matrices have emerged as promising candidates for cell encapsulation, bioprinting, and tissue engineering. How-ever, it remains challenging to design and optimize these materials given their broad compositional and processing parameter space. Here, we combine experimentation and computation to create granular matrices composed of alginate-based bioblocks with controlled structure, rheological properties, and injectability pro-files. A custom machine learning pipeline is applied after each phase of experimentation to automatically map the multidimensional input-output patterns into condensed data-driven models. These models are used to assess generalizable predictability and define high-level design rules to guide subsequent phases of development and characterization. Our integrated, modular approach opens new avenues to understanding and controlling the behavior of complex soft materials.
引用
收藏
页码:1015 / 1036
页数:23
相关论文
共 50 条
  • [21] DATA-DRIVEN NONSMOOTH OPTIMIZATION
    Banert, Sebastian
    Ringh, Axel
    Adler, Jonas
    Karlsson, Johan
    Oktem, Ozan
    SIAM JOURNAL ON OPTIMIZATION, 2020, 30 (01) : 102 - 131
  • [22] Data-Driven Granular Computing Systems and Applications
    Ruidan Su
    George Panoutsos
    Xiaodong Yue
    Granular Computing, 2021, 6 : 1 - 2
  • [23] Data-driven optimization in management
    Consigli, Giorgio
    Kleywegt, Anton
    COMPUTATIONAL MANAGEMENT SCIENCE, 2019, 16 (03) : 371 - 374
  • [24] Vision for energy material design:A roadmap for integrated data-driven modeling
    Zhilong Wang
    Yanqiang Han
    Junfei Cai
    An Chen
    Jinjin Li
    Journal of Energy Chemistry, 2022, 71 (08) : 56 - 62
  • [25] Data-driven optimization in management
    Giorgio Consigli
    Anton Kleywegt
    Computational Management Science, 2019, 16 : 371 - 374
  • [26] Data-driven robust optimization
    Dimitris Bertsimas
    Vishal Gupta
    Nathan Kallus
    Mathematical Programming, 2018, 167 : 235 - 292
  • [27] An integrated data-driven framework for urban energy use modeling (UEUM)
    Abbasabadi, Narjes
    Ashayeri, Mehdi
    Azari, Rahman
    Stephens, Brent
    Heidarinejad, Mohammad
    APPLIED ENERGY, 2019, 253
  • [28] Fire risk modeling: an integrated and data-driven approach applied to Sicily
    Marquez Torres, Alba
    Signorello, Giovanni
    Kumar, Sudeshna
    Adamo, Greta
    Villa, Ferdinando
    Balbi, Stefano
    NATURAL HAZARDS AND EARTH SYSTEM SCIENCES, 2023, 23 (09) : 2937 - 2959
  • [29] Data-Driven Granular Computing Systems and Applications
    Su, Ruidan
    Panoutsos, George
    Yue, Xiaodong
    GRANULAR COMPUTING, 2021, 6 (01) : 1 - 2
  • [30] Vision for energy material design: A roadmap for integrated data-driven modeling
    Wang, Zhilong
    Han, Yanqiang
    Cai, Junfei
    Chen, An
    Li, Jinjin
    JOURNAL OF ENERGY CHEMISTRY, 2022, 71 : 56 - 62