Integrated data-driven modeling and experimental optimization of granular hydrogel matrices

被引:21
|
作者
Verheyen, Connor A. [1 ,2 ,3 ]
Uzel, Sebastien G. M. [3 ]
Kurum, Armand [3 ,4 ]
Roche, Ellen T. [1 ,5 ]
Lewis, Jennifer A. [4 ]
机构
[1] Harvard MIT Program Hlth Sci & Technol, Cambridge, MA 02139 USA
[2] MIT, Inst Med Engn & Sci, Cambridge, MA 02139 USA
[3] Harvard Univ, Wyss Inst Biol Inspired Engn, Cambridge, MA 02138 USA
[4] Harvard Univ, John A Paulson Sch Engn & Appl Sci, Cambridge, MA 02138 USA
[5] MIT, Dept Mech Engn, Cambridge, MA 02139 USA
基金
美国国家科学基金会;
关键词
complex material system; robust model selection; granular matrices; complex; MATERIALS DISCOVERY; DESIGN; SUSPENSIONS; MICROGELS; RHEOLOGY; SIZE; FLOW;
D O I
10.1016/j.matt.2023.01.011
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Granular hydrogel matrices have emerged as promising candidates for cell encapsulation, bioprinting, and tissue engineering. How-ever, it remains challenging to design and optimize these materials given their broad compositional and processing parameter space. Here, we combine experimentation and computation to create granular matrices composed of alginate-based bioblocks with controlled structure, rheological properties, and injectability pro-files. A custom machine learning pipeline is applied after each phase of experimentation to automatically map the multidimensional input-output patterns into condensed data-driven models. These models are used to assess generalizable predictability and define high-level design rules to guide subsequent phases of development and characterization. Our integrated, modular approach opens new avenues to understanding and controlling the behavior of complex soft materials.
引用
收藏
页码:1015 / 1036
页数:23
相关论文
共 50 条
  • [1] Data-Driven Modeling of Granular Column Collapse
    Yang, Qinghao
    Hambleton, James P.
    GEO-EXTREME 2021: INFRASTRUCTURE RESILIENCE, BIG DATA, AND RISK, 2021, 330 : 79 - 88
  • [2] Industrial Data-driven Plant Optimization Modeling
    Ohara, Kenichi
    Aoki, Jun
    Kamada, Kenichi
    2016 55TH ANNUAL CONFERENCE OF THE SOCIETY OF INSTRUMENT AND CONTROL ENGINEERS OF JAPAN (SICE), 2016, : 569 - 574
  • [3] Data-driven mechanical behavior modeling of granular biomass materials
    Li, Xuyang
    Jin, Wencheng
    Klinger, Jordan
    Saha, Nepu
    Lajnef, Nizar
    COMPUTERS AND GEOTECHNICS, 2025, 177
  • [4] Experimental data-driven tumor modeling for chemotherapy
    Drexler, Daniel Andras
    Ferenci, Tamas
    Fueredi, Andras
    Szakacs, Gergely
    Kovacs, Levente
    IFAC PAPERSONLINE, 2020, 53 (02): : 16245 - 16250
  • [5] A Pipeline for Integrated Theory and Data-Driven Modeling of Biomedical Data
    Raghu, Vineet K.
    Ge, Xiaoyu
    Balajiee, Arun
    Shirer, Daniel J.
    Das, Isha
    Benos, Panayiotis, V
    Chrysanthis, Panos K.
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2021, 18 (03) : 811 - 822
  • [6] Data-driven strategies for optimization of integrated chemical plants
    Ma, Kaiwen
    V. Sahinidis, Nikolaos
    Amaran, Satyajith
    Bindlish, Rahul
    Bury, Scott J.
    Griffith, Devin
    Rajagopalan, Sreekanth
    COMPUTERS & CHEMICAL ENGINEERING, 2022, 166
  • [7] Data-driven Performance Modeling of Linear Solvers for Sparse Matrices
    Yeom, Jae-Seung
    Thiagarajan, Jayaraman J.
    Bhatele, Abhinav
    Bronevetsky, Greg
    Kolev, Tzanio
    PROCEEDINGS OF PMBS 2016: 7TH INTERNATIONAL WORKSHOP ON PERFORMANCE MODELING, BENCHMARKING AND SIMULATION OF HIGH PERFORMANCE COMPUTING SYSTEMS, 2016, : 32 - 42
  • [8] Integrated Process and Decision Modeling for Data-Driven Processes
    van der Aa, Han
    Leopold, Henrik
    Batoulis, Kimon
    Weske, Mathias
    Reijers, Hajo A.
    BUSINESS PROCESS MANAGEMENT WORKSHOPS, (BPM 2015), 2016, 256 : 405 - 417
  • [9] Observational data-driven modeling and optimization of manufacturing processes
    Sadati, Najibesadat
    Chinnam, Ratna Babu
    Nezhad, Milad Zafar
    EXPERT SYSTEMS WITH APPLICATIONS, 2018, 93 : 456 - 464
  • [10] Data-Driven Granular Cognitive Computing
    Wang, Guoyin
    ROUGH SETS, 2017, 10313 : 13 - 24