NCBI GEO: archive for gene expression and epigenomics data sets: 23-year update

被引:81
|
作者
Clough, Emily [1 ]
Barrett, Tanya [1 ]
Wilhite, Stephen E. [1 ]
Ledoux, Pierre [1 ]
Evangelista, Carlos [1 ]
Kim, Irene F. [1 ]
Tomashevsky, Maxim [1 ]
Marshall, Kimberly A. [1 ]
Phillippy, Katherine H. [1 ]
Sherman, Patti M. [1 ]
Lee, Hyeseung [1 ]
Zhang, Naigong [1 ]
Serova, Nadezhda [1 ]
Wagner, Lukas [1 ]
Zalunin, Vadim [1 ]
Kochergin, Andrey [1 ]
Soboleva, Alexandra [1 ]
机构
[1] NIH, Natl Ctr Biotechnol Informat, Natl Lib Med, Bethesda, MD 20892 USA
关键词
RNA-SEQ; OMNIBUS; PRINCIPLES; CHROMATIN; MAPS;
D O I
10.1093/nar/gkad965
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The Gene Expression Omnibus (GEO) is an international public repository that archives gene expression and epigenomics data sets generated by next-generation sequencing and microarray technologies. Data are typically submitted to GEO by researchers in compliance with widespread journal and funder mandates to make generated data publicly accessible. The resource handles raw data files, processed data files and descriptive metadata for over 200 000 studies and 6.5 million samples, all of which are indexed, searchable and downloadable. Additionally, GEO offers web-based tools that facilitate analysis and visualization of differential gene expression. This article presents the current status and recent advancements in GEO, including the generation of consistently computed gene expression count matrices for thousands of RNA-seq studies, and new interactive graphical plots in GEO2R that help users identify differentially expressed genes and assess data set quality. The GEO repository is built and maintained by the National Center for Biotechnology Information (NCBI), a division of the National Library of Medicine (NLM), and is publicly accessible at https://www.ncbi.nlm.nih.gov/geo/. Graphical Abstract
引用
收藏
页码:D138 / D144
页数:7
相关论文
共 50 条
  • [41] DSGeo: Software tools for cross-platform analysis of gene expression data in GEO
    Lacson, Ronilda
    Pitzer, Erik
    Kim, Jihoon
    Galante, Pedro
    Hinske, Christian
    Ohno-Machado, Lucila
    JOURNAL OF BIOMEDICAL INFORMATICS, 2010, 43 (05) : 709 - 715
  • [42] BRB-ArrayTools Data Archive for Human Cancer Gene Expression: A Unique and Efficient Data Sharing Resource
    Zhao, Yingdong
    Simon, Richard
    CANCER INFORMATICS, 2008, 6 : 9 - 15
  • [43] Integrated analysis of DNA copy number and gene expression microarray data using gene sets
    Renée X Menezes
    Marten Boetzer
    Melle Sieswerda
    Gert-Jan B van Ommen
    Judith M Boer
    BMC Bioinformatics, 10
  • [44] A Hybrid Approach of Gene Sets and Single Genes for the Prediction of Survival Risks with Gene Expression Data
    Seok, Junhee
    Davis, Ronald W.
    Xiao, Wenzhong
    PLOS ONE, 2015, 10 (05):
  • [45] New Gene Selection Method Using Gene Expression Programing Approach on Microarray Data Sets
    Alanni, Russul
    Hou, Jingyu
    Azzawi, Hasseeb
    Xiang, Yong
    COMPUTER AND INFORMATION SCIENCE (ICIS 2018), 2019, 791 : 17 - 31
  • [46] Integrated analysis of DNA copy number and gene expression microarray data using gene sets
    Menezes, Renee X.
    Boetzer, Marten
    Sieswerda, Melle
    van Ommen, Gert-Jan B.
    Boer, Judith M.
    BMC BIOINFORMATICS, 2009, 10
  • [47] Novel gene sets improve set-level classification of prokaryotic gene expression data
    Matěj Holec
    Ondřej Kuželka
    Filip železný
    BMC Bioinformatics, 16
  • [48] Discovering negative correlated gene sets from integrative gene expression data for cancer prognosis
    Zeng, Tao
    Guo, Xuan
    Liu, Juan
    2010 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE, 2010, : 489 - 492
  • [49] Novel gene sets improve set-level classification of prokaryotic gene expression data
    Holec, Matej
    Kuzelka, Ondrej
    Zelezny, Filip
    BMC BIOINFORMATICS, 2015, 16
  • [50] Using Supervised Complexity Measures in the Analysis of Cancer Gene Expression Data Sets
    Costa, Ivan G.
    Lorena, Ana C.
    Peres, Liciana R. M. P. y
    de Souto, Marcilio C. P.
    ADVANCES IN BIOINFORMATICS AND COMPUTATIONAL BIOLOGY, PROCEEDINGS, 2009, 5676 : 48 - +