DSGeo: Software tools for cross-platform analysis of gene expression data in GEO

被引:11
|
作者
Lacson, Ronilda [1 ]
Pitzer, Erik [2 ]
Kim, Jihoon [3 ]
Galante, Pedro [4 ]
Hinske, Christian [5 ]
Ohno-Machado, Lucila [3 ]
机构
[1] Brigham & Womens Hosp, Decis Syst Grp, Brookline, MA 02445 USA
[2] Upper Austria Univ Appl Sci, Hagenberg, Austria
[3] UCSD, Div Biomed Informat, La Jolla, CA USA
[4] Ludwig Inst Canc Res, Sao Paulo, Brazil
[5] Univ Munich, Munich, Germany
关键词
Gene expression data; Cross-platform analysis; Biomedical data annotation; Integration; BREAST-CANCER; ANNOTATION; AFFYMETRIX; TECHNOLOGIES; ARRAYEXPRESS; MICROARRAYS; PROFILES;
D O I
10.1016/j.jbi.2010.04.007
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The Gene Expression Omnibus (GEO) is the largest resource of public gene expression data. While GEO enables data browsing, query and retrieval, additional tools can help realize its potential for aggregating and comparing data across multiple studies and platforms. This paper describes DSGeo-a collection of valuable tools that were developed for annotating, aggregating, integrating, and analyzing data deposited in GEO. The core set of tools include a Relational Database, a Data Loader, a Data Browser, and an Expression Combiner and Analyzer. The application enables querying for specific sample characteristics and identifying studies containing samples that match the query. The Expression Combiner application enables normalization and aggregation of data from these samples and returns these data to the user after filtering, according to the user's preferences. The Expression Analyzer allows simple statistical comparisons between groups of data. This seamless integration makes annotated cross-platform data directly available for analysis. (c) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:709 / 715
页数:7
相关论文
共 50 条
  • [1] Cross-Platform Analysis with Binarized Gene Expression Data
    Tuna, Salih
    Niranjan, Mahesan
    PATTERN RECOGNITION IN BIOINFORMATICS, PROCEEDINGS, 2009, 5780 : 439 - 449
  • [2] Differential network analysis from cross-platform gene expression data
    Zhang, Xiao-Fei
    Le Ou-Yang
    Zhao, Xing-Ming
    Yan, Hong
    SCIENTIFIC REPORTS, 2016, 6
  • [3] Differential network analysis from cross-platform gene expression data
    Xiao-Fei Zhang
    Le Ou-Yang
    Xing-Ming Zhao
    Hong Yan
    Scientific Reports, 6
  • [4] Empirical comparison of cross-platform normalization methods for gene expression data
    Jason Rudy
    Faramarz Valafar
    BMC Bioinformatics, 12
  • [5] Empirical comparison of cross-platform normalization methods for gene expression data
    Rudy, Jason
    Valafar, Faramarz
    BMC BIOINFORMATICS, 2011, 12
  • [6] MatchMixeR: a cross-platform normalization method for gene expression data integration
    Zhang, Serin
    Shao, Jiang
    Yu, Disa
    Qiu, Xing
    Zhang, Jinfeng
    BIOINFORMATICS, 2020, 36 (08) : 2486 - 2491
  • [7] Cross-Platform Prediction of Gene Expression Signatures
    Lin, Shu-Hong
    Beane, Lauren
    Chasse, Dawn
    Zhu, Kevin W.
    Mathey-Prevot, Bernard
    Chang, Jeffrey T.
    PLOS ONE, 2013, 8 (11):
  • [8] Cross-platform analysis of cancer microarray data improves gene expression based classification of phenotypes
    Warnat, P
    Eils, R
    Brors, B
    BMC BIOINFORMATICS, 2005, 6 (1)
  • [9] Cross-platform comparison and visualisation of gene expression data using co-inertia analysis
    Aedín C Culhane
    Guy Perrière
    Desmond G Higgins
    BMC Bioinformatics, 4
  • [10] Cross-platform analysis of cancer microarray data improves gene expression based classification of phenotypes
    Patrick Warnat
    Roland Eils
    Benedikt Brors
    BMC Bioinformatics, 6