Motion Profile Optimization in Industrial Robots using Reinforcement Learning

被引:1
|
作者
Wen, Yunshi [1 ]
He, Honglu [1 ]
Julius, Agung [1 ]
Wen, John T. [1 ]
机构
[1] Rensselaer Polytech Inst, Elect Comp & Syst Engn Dept, Troy, NY 12180 USA
关键词
Reinforcement Learning; Industrial Robot; Motion Primitive; Trajectory Optimization; Trajectory Tracking;
D O I
10.1109/AIM46323.2023.10196247
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Path tracking problems are challenging with the absence of dynamic models and information about robot controllers. This paper presents a method of optimizing a motion profile constructed using a set of pre-defined motion primitives and a speed command to track a spatial trajectory with high accuracy, speed, and uniform motion using industrial robots. We use a bi-level optimization approach that optimizes execution accuracy using reinforcement learning and execution speed using bi-section search. We train and evaluate the reinforcement learning policy in simulation for an ABB robot. Experiment results demonstrate that the learned policy reduces the optimization cost to achieve the desired specifications. Additionally, the trained policy can generalize to trajectories not included in the training set.
引用
收藏
页码:1309 / 1316
页数:8
相关论文
共 50 条
  • [41] Motion Planning for Mobile Robots-Focusing on Deep Reinforcement Learning: A Systematic Review
    Sun, Huihui
    Zhang, Weijie
    Yu, Runxiang
    Zhang, Yujie
    IEEE ACCESS, 2021, 9 : 69061 - 69081
  • [42] Optimization of Obstacle Avoidance Using Reinforcement Learning
    Kominami, Keishi
    Takubo, Tomohito
    Ohara, Kenichi
    Mae, Yasushi
    Arai, Tatsuo
    2012 IEEE/SICE INTERNATIONAL SYMPOSIUM ON SYSTEM INTEGRATION (SII), 2012, : 67 - 72
  • [43] Robot Control Optimization Using Reinforcement Learning
    Kai-Tai Song
    Wen-Yu Sun
    Journal of Intelligent and Robotic Systems, 1998, 21 : 221 - 238
  • [44] Robot control optimization using reinforcement learning
    Natl Chiao Tung Univ, Hsinchu, Taiwan
    J Intell Rob Syst Theor Appl, 3 (221-238):
  • [45] A Logic Optimization Method Using Reinforcement Learning
    Cai, Yuting
    Wu, Yue
    Yang, Xiaoyan
    Chu, Zhufei
    2024 INTERNATIONAL SYMPOSIUM OF ELECTRONICS DESIGN AUTOMATION, ISEDA 2024, 2024, : 312 - 317
  • [46] Optimization of Reinforcement Learning Using Quantum Computation
    Ravish, Roopa
    Bhat, Nischal R.
    Nandakumar, N.
    Sagar, S.
    Sunil, Prasad B.
    Honnavalli, Prasad B.
    IEEE ACCESS, 2024, 12 : 179396 - 179417
  • [47] Robot control optimization using reinforcement learning
    Song, KT
    Sun, WY
    JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS, 1998, 21 (03) : 221 - 238
  • [48] Strain design optimization using reinforcement learning
    Sabzevari, Maryam
    Szedmak, Sandor
    Penttila, Merja
    Jouhten, Paula
    Rousu, Juho
    PLOS COMPUTATIONAL BIOLOGY, 2022, 18 (06)
  • [49] External force estimation for industrial robots using configuration optimization
    Lu, Yan
    Shen, Yichao
    Zhuang, Chungang
    AUTOMATIKA, 2023, 64 (02) : 365 - 388
  • [50] Quadrotor motion control using deep reinforcement learning
    Jiang, Zifei
    Lynch, Alan F.
    JOURNAL OF UNMANNED VEHICLE SYSTEMS, 2021, 9 (04) : 234 - 251