Motion Profile Optimization in Industrial Robots using Reinforcement Learning

被引:1
|
作者
Wen, Yunshi [1 ]
He, Honglu [1 ]
Julius, Agung [1 ]
Wen, John T. [1 ]
机构
[1] Rensselaer Polytech Inst, Elect Comp & Syst Engn Dept, Troy, NY 12180 USA
关键词
Reinforcement Learning; Industrial Robot; Motion Primitive; Trajectory Optimization; Trajectory Tracking;
D O I
10.1109/AIM46323.2023.10196247
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Path tracking problems are challenging with the absence of dynamic models and information about robot controllers. This paper presents a method of optimizing a motion profile constructed using a set of pre-defined motion primitives and a speed command to track a spatial trajectory with high accuracy, speed, and uniform motion using industrial robots. We use a bi-level optimization approach that optimizes execution accuracy using reinforcement learning and execution speed using bi-section search. We train and evaluate the reinforcement learning policy in simulation for an ABB robot. Experiment results demonstrate that the learned policy reduces the optimization cost to achieve the desired specifications. Additionally, the trained policy can generalize to trajectories not included in the training set.
引用
收藏
页码:1309 / 1316
页数:8
相关论文
共 50 条
  • [21] Deep Reinforcement Learning for Multi-contact Motion Planning of Hexapod Robots
    Fu, Huiqiao
    Tang, Kaiqiang
    Li, Peng
    Zhang, Wenqi
    Wang, Xinpeng
    Deng, Guizhou
    Wang, Tao
    Chen, Chunlin
    PROCEEDINGS OF THE THIRTIETH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2021, 2021, : 2381 - 2388
  • [22] Robust reinforcement learning with UUB guarantee for safe motion control of autonomous robots
    RuiXian Zhang
    YiNing Han
    Man Su
    ZeFeng Lin
    HaoWei Li
    LiXian Zhang
    Science China Technological Sciences, 2024, 67 : 172 - 182
  • [23] Reinforcement learning-based motion control for snake robots in complex environments
    Zhang, Dong
    Ju, Renjie
    Cao, Zhengcai
    ROBOTICA, 2024, 42 (04) : 947 - 961
  • [24] Task-Motion Planning with Reinforcement Learning for Adaptable Mobile Service Robots
    Jiang, Yuqian
    Yang, Fangkai
    Zhang, Shiqi
    Stone, Peter
    2019 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2019, : 7529 - 7534
  • [25] Robust reinforcement learning with UUB guarantee for safe motion control of autonomous robots
    ZHANG RuiXian
    HAN YiNing
    SU Man
    LIN ZeFeng
    LI HaoWei
    ZHANG LiXian
    Science China(Technological Sciences), 2024, 67 (01) : 172 - 182
  • [26] Robust reinforcement learning with UUB guarantee for safe motion control of autonomous robots
    Zhang, RuiXian
    Han, YiNing
    Su, Man
    Lin, ZeFeng
    Li, HaoWei
    Zhang, LiXian
    SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2024, 67 (01) : 172 - 182
  • [27] Motion planning of walking robots using ordinal optimization
    Univ of Pennsylvania, Philadelphia, United States
    IEEE Rob Autom Mag, 2 (22-32):
  • [28] Motion planning of walking robots using ordinal optimization
    Chen, CH
    Kumar, V
    Luo, YC
    IEEE ROBOTICS & AUTOMATION MAGAZINE, 1998, 5 (02) : 22 - 32
  • [29] From Robots to Reinforcement Learning
    Du, Tongchun
    Cox, Michael T.
    Perlis, Don
    Shamwell, Jared
    Oates, Tim
    2013 IEEE 25TH INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI), 2013, : 540 - 545
  • [30] A Systematic Review on Reinforcement Learning for Industrial Combinatorial Optimization Problems
    Martins, Miguel S. E.
    Sousa, Joao M. C.
    Vieira, Susana
    APPLIED SCIENCES-BASEL, 2025, 15 (03):