Deep Learning-Based Trajectory Planning and Control for Autonomous Ground Vehicle Parking Maneuver

被引:118
|
作者
Chai, Runqi [1 ]
Liu, Derong [2 ]
Liu, Tianhao [1 ]
Tsourdos, Antonios [3 ]
Xia, Yuanqing [1 ]
Chai, Senchun [1 ]
机构
[1] Beijing Inst Technol, Sch Automat, Beijing 100081, Peoples R China
[2] Univ Illinois, Dept Elect & Comp Engn, Chicago, IL 60607 USA
[3] Cranfield Univ, Sch Aerosp Transport & Mfg, Bedford MK43 0AL, England
关键词
Trajectory; Planning; Artificial neural networks; Real-time systems; Land vehicles; Vehicle dynamics; Uncertainty; Real-time trajectory planning; tracking control; autonomous ground vehicle; deep neural networks; adaptive learning tracking control; NEURAL-NETWORKS; SYSTEM;
D O I
10.1109/TASE.2022.3183610
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, a novel integrated real-time trajectory planning and tracking control framework capable of dealing with autonomous ground vehicle (AGV) parking maneuver problems is presented. In the motion planning component, a newly-proposed idea of utilizing deep neural networks (DNNs) for approximating optimal parking trajectories is further extended by taking advantages of a recurrent network structure. The main aim is to fully exploit the inherent relationships between different vehicle states in the training process. Furthermore, two transfer learning strategies are applied such that the developed motion planner can be adapted to suit various AGVs. In order to follow the planned maneuver trajectory, an adaptive learning tracking control algorithm is designed and served as the motion controller. By adapting the network parameters, the stability of the proposed control scheme, along with the convergence of tracking errors, can be theoretically guaranteed. In order to validate the effectiveness and emphasize key features of our proposal, a number of experimental studies and comparative analysis were executed. The obtained results reveal that the proposed strategy can enable the AGV to fulfill the parking mission with enhanced motion planning and control performance. Note to Practitioners-This article was motivated by the problem of optimal automatic parking planning and tracking control for autonomous ground vehicles (AGVs) maneuvering in a restricted environment (e.g., constrained parking regions). A number of challenges may arise when dealing with this problem (e.g., the model uncertainties involved in the vehicle dynamics, system variable limits, and the presence of external disturbances). Existing approaches to address such a problem usually exploit the merit of optimization-based planning/control techniques such as model predictive control and dynamic programming in order for an optimal solution. However, two practical issues may require further considerations: 1). The nonlinear (re)optimization process tends to consume a large amount of computing power and it might not be affordable in real-time; 2). Existing motion planning and control algorithms might not be easily adapted to suit various types of AGVs. To overcome the aforementioned issues, we present an idea of utilizing the recurrent deep neural network (RDNN) for planning optimal parking maneuver trajectories and an adaptive learning NN-based (ALNN) control scheme for robust trajectory tracking. In addition, by introducing two transfer learning strategies, the proposed RDNN motion planner can be adapted to suit different AGVs. In our follow-up research, we will explore the possibility of extending the developed methodology for large-scale AGV parking systems collaboratively operating in a more complex cluttered environment.
引用
收藏
页码:1633 / 1647
页数:15
相关论文
共 50 条
  • [31] PID Trajectory Tracking Control of Autonomous Ground Vehicle Based on Genetic Algorithm
    Zhao, Bin
    Wang, Heng
    Li, Qing
    Li, Jingkai
    Zhao, Yuefei
    PROCEEDINGS OF THE 2019 31ST CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2019), 2019, : 3677 - 3682
  • [32] Lyapunov Based Hierarchical Trajectory Control of an Autonomous Ground Vehicle Subjected to Slip
    Patil, Omkar Sudhir
    Bhasin, Shubhendu
    IFAC PAPERSONLINE, 2020, 53 (02): : 6340 - 6345
  • [33] Deep reinforcement learning-based autonomous parking design with neural network compute accelerators
    Ozeloglu, Alican
    Gurbuz, Ismihan Gul
    San, Ismail
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2022, 34 (09):
  • [34] Deep reinforcement learning-based reactive trajectory planning method for UAVs
    Cao, Lijia
    Wang, Lin
    Liu, Yang
    Xu, Weihong
    Geng, Chuang
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART G-JOURNAL OF AEROSPACE ENGINEERING, 2024, 238 (10) : 1018 - 1037
  • [35] Parallel Parking Trajectory Planning for Autonomous Vehicles
    Hu J.
    Zhang M.
    Xu W.
    Chen R.
    Zhong X.
    Zhu L.
    Qiche Gongcheng/Automotive Engineering, 2022, 44 (03): : 330 - 339
  • [36] Multi-maneuver Vertical Parking Trajectory Planning and Tracking Control in Narrow Environments
    Chen, Guoying
    Gao, Zheng
    Hu, Hongyu
    Du, Jianyu
    Wang, Hengkai
    AUTOMOTIVE INNOVATION, 2024, 7 (02) : 300 - 311
  • [37] Trajectory Reference Generation and Guidance Control for Autonomous Vehicle Lane Change Maneuver
    Ammour, Manel
    Orjuela, Rodolfo
    Basset, Michel
    2020 28TH MEDITERRANEAN CONFERENCE ON CONTROL AND AUTOMATION (MED), 2020, : 13 - 18
  • [38] Vehicle Steering Control with MPC for Target Trajectory Tracking of Autonomous Reverse Parking
    Tashiro, Tsutomu
    2013 IEEE INTERNATIONAL CONFERENCE ON CONTROL APPLICATIONS (CCA), 2013, : 247 - 251
  • [39] Learning-based Model Predictive Control for Path Tracking Control of Autonomous Vehicle
    Rokonuzzaman, Mohammad
    Mohajer, Navid
    Nahavandi, Saeid
    Mohamed, Shady
    2020 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2020, : 2913 - 2918
  • [40] Deep reinforcement learning for adaptive path planning and control of an autonomous underwater vehicle
    Hadi, Behnaz
    Khosravi, Alireza
    Sarhadi, Pouria
    APPLIED OCEAN RESEARCH, 2022, 129