Deep Learning-Based Trajectory Planning and Control for Autonomous Ground Vehicle Parking Maneuver

被引:118
|
作者
Chai, Runqi [1 ]
Liu, Derong [2 ]
Liu, Tianhao [1 ]
Tsourdos, Antonios [3 ]
Xia, Yuanqing [1 ]
Chai, Senchun [1 ]
机构
[1] Beijing Inst Technol, Sch Automat, Beijing 100081, Peoples R China
[2] Univ Illinois, Dept Elect & Comp Engn, Chicago, IL 60607 USA
[3] Cranfield Univ, Sch Aerosp Transport & Mfg, Bedford MK43 0AL, England
关键词
Trajectory; Planning; Artificial neural networks; Real-time systems; Land vehicles; Vehicle dynamics; Uncertainty; Real-time trajectory planning; tracking control; autonomous ground vehicle; deep neural networks; adaptive learning tracking control; NEURAL-NETWORKS; SYSTEM;
D O I
10.1109/TASE.2022.3183610
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, a novel integrated real-time trajectory planning and tracking control framework capable of dealing with autonomous ground vehicle (AGV) parking maneuver problems is presented. In the motion planning component, a newly-proposed idea of utilizing deep neural networks (DNNs) for approximating optimal parking trajectories is further extended by taking advantages of a recurrent network structure. The main aim is to fully exploit the inherent relationships between different vehicle states in the training process. Furthermore, two transfer learning strategies are applied such that the developed motion planner can be adapted to suit various AGVs. In order to follow the planned maneuver trajectory, an adaptive learning tracking control algorithm is designed and served as the motion controller. By adapting the network parameters, the stability of the proposed control scheme, along with the convergence of tracking errors, can be theoretically guaranteed. In order to validate the effectiveness and emphasize key features of our proposal, a number of experimental studies and comparative analysis were executed. The obtained results reveal that the proposed strategy can enable the AGV to fulfill the parking mission with enhanced motion planning and control performance. Note to Practitioners-This article was motivated by the problem of optimal automatic parking planning and tracking control for autonomous ground vehicles (AGVs) maneuvering in a restricted environment (e.g., constrained parking regions). A number of challenges may arise when dealing with this problem (e.g., the model uncertainties involved in the vehicle dynamics, system variable limits, and the presence of external disturbances). Existing approaches to address such a problem usually exploit the merit of optimization-based planning/control techniques such as model predictive control and dynamic programming in order for an optimal solution. However, two practical issues may require further considerations: 1). The nonlinear (re)optimization process tends to consume a large amount of computing power and it might not be affordable in real-time; 2). Existing motion planning and control algorithms might not be easily adapted to suit various types of AGVs. To overcome the aforementioned issues, we present an idea of utilizing the recurrent deep neural network (RDNN) for planning optimal parking maneuver trajectories and an adaptive learning NN-based (ALNN) control scheme for robust trajectory tracking. In addition, by introducing two transfer learning strategies, the proposed RDNN motion planner can be adapted to suit different AGVs. In our follow-up research, we will explore the possibility of extending the developed methodology for large-scale AGV parking systems collaboratively operating in a more complex cluttered environment.
引用
收藏
页码:1633 / 1647
页数:15
相关论文
共 50 条
  • [21] Deep Reinforcement Learning-Based Vehicle Energy Efficiency Autonomous Learning System
    Qi, Xuewei
    Luo, Yadan
    Wu, Guoyuan
    Boriboonsomsin, Kanok
    Barth, Matthew J.
    2017 28TH IEEE INTELLIGENT VEHICLES SYMPOSIUM (IV 2017), 2017, : 1228 - 1233
  • [22] Reinforcement learning-based unmanned aerial vehicle trajectory planning for ground users' mobility management in heterogeneous networks
    Ullah, Yasir
    Roslee, Mardeni
    Mitani, Sufian Mousa
    Sheraz, Muhammad
    Ali, Farman
    Osman, Anwar Faizd
    Jusoh, Mohamad Huzaimy
    Sudhamani, Chilakala
    JOURNAL OF KING SAUD UNIVERSITY-COMPUTER AND INFORMATION SCIENCES, 2024, 36 (05)
  • [23] Architecture for Testing Learning-Based Autonomous Vehicle Control Design
    Kogan, Michael
    Jardine, Peter T.
    Givigi, Sidney N.
    12TH ANNUAL IEEE INTERNATIONAL SYSTEMS CONFERENCE (SYSCON2018), 2018, : 235 - 241
  • [24] A review on reinforcement learning-based highway autonomous vehicle control
    Irshayyid, Ali
    Chen, Jun
    Xiong, Guojiang
    GREEN ENERGY AND INTELLIGENT TRANSPORTATION, 2024, 3 (04):
  • [25] Deep Learning-based Heading Angle Estimation for Enhanced Autonomous Vehicle Backward Driving Control
    Jeong Ku Kim
    Dong-wook Kwon
    Seul Jung
    International Journal of Control, Automation and Systems, 2025, 23 (4) : 1210 - 1219
  • [26] A Review of Deep Learning-Based Vehicle Motion Prediction for Autonomous Driving
    Huang, Renbo
    Zhuo, Guirong
    Xiong, Lu
    Lu, Shouyi
    Tian, Wei
    SUSTAINABILITY, 2023, 15 (20)
  • [27] Deep reinforcement learning-based drift parking control of automated vehicles
    LENG Bo
    YU YiZe
    LIU Ming
    CAO Lei
    YANG Xing
    XIONG Lu
    Science China(Technological Sciences), 2023, (04) : 1152 - 1165
  • [28] Deep reinforcement learning-based drift parking control of automated vehicles
    Bo Leng
    YiZe Yu
    Ming Liu
    Lei Cao
    Xing Yang
    Lu Xiong
    Science China Technological Sciences, 2023, 66 : 1152 - 1165
  • [29] Deep reinforcement learning-based drift parking control of automated vehicles
    LENG Bo
    YU YiZe
    LIU Ming
    CAO Lei
    YANG Xing
    XIONG Lu
    Science China(Technological Sciences), 2023, 66 (04) : 1152 - 1165
  • [30] Deep reinforcement learning-based drift parking control of automated vehicles
    Leng, Bo
    Yu, YiZe
    Liu, Ming
    Cao, Lei
    Yang, Xing
    Xiong, Lu
    SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2023, 66 (04) : 1152 - 1165