Slow-Fast Systems with an Equilibrium Near the Folded Slow Manifold

被引:0
|
作者
Gelfreikh, Natalia G. [1 ]
Ivanov, Alexey V. [1 ]
机构
[1] St Petersburg State Univ, 7-9 Universitetskaya Nab, St Petersburg 199034, Russia
来源
REGULAR & CHAOTIC DYNAMICS | 2024年 / 29卷 / 02期
关键词
slow-fast systems; period-doubling bifurcation; SINGULAR PERTURBATION-THEORY; STABILITY LOSS; OSCILLATIONS; PERSISTENCE;
D O I
10.1134/S156035472354002X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study a slow-fast system with two slow and one fast variables.We assume that the slow manifold of the system possesses a fold and there is an equilibrium of the system in a small neighborhood of the fold. We derive a normal form for the systemin a neighborhood of the pair "equilibrium-fold"and study the dynamics of the normal form. In particular, as the ratio of two time scales tends to zero we obtain an asymptotic formula for the Poincare mapand calculate the parameter values for the first period-doubling bifurcation. The theory is applied to a generalization of the FitzHugh - Nagumo system.
引用
收藏
页码:376 / 403
页数:28
相关论文
共 50 条
  • [11] Drift of slow variables in slow-fast Hamiltonian systems
    Brannstrom, N.
    Gelfreich, V.
    PHYSICA D-NONLINEAR PHENOMENA, 2008, 237 (22) : 2913 - 2921
  • [12] Jumps of energy near a separatrix in slow-fast Hamiltonian systems
    Bolotin, S. V.
    RUSSIAN MATHEMATICAL SURVEYS, 2018, 73 (04) : 725 - 727
  • [13] Recurrence analysis of slow-fast systems
    Kasthuri, Praveen
    Pavithran, Induja
    Krishnan, Abin
    Pawar, Samadhan A.
    Sujith, R. I.
    Gejji, Rohan
    Anderson, William
    Marwan, Norbert
    Kurths, Juergen
    CHAOS, 2020, 30 (06)
  • [14] Quadratic slow-fast systems on the plane
    Meza-Sarmiento, Ingrid S.
    Oliveira, Regilene
    Silva, Paulo R. da
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2021, 60
  • [15] Equilibration of energy in slow-fast systems
    Shah, Kushal
    Turaev, Dmitry
    Gelfreich, Vassili
    Rom-Kedar, Vered
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2017, 114 (49) : E10514 - E10523
  • [16] Slow-fast autonomous dynamical systems
    Rossetto, B
    Lenzini, T
    Ramdani, S
    Suchey, G
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1998, 8 (11): : 2135 - 2145
  • [17] Destabilizing factors in slow-fast systems
    Rinaldi, S
    Gragnani, A
    ECOLOGICAL MODELLING, 2004, 180 (04) : 445 - 460
  • [18] Modified slow-fast analysis method for slow-fast dynamical systems with two scales in frequency domain
    Zhengdi Zhang
    Zhangyao Chen
    Qinsheng Bi
    Theoretical & Applied Mechanics Letters, 2019, 9 (06) : 358 - 362
  • [19] Modified slow-fast analysis method for slow-fast dynamical systems with two scales in frequency domain
    Zhang, Zhengdi
    Chen, Zhangyao
    Bi, Qinsheng
    THEORETICAL AND APPLIED MECHANICS LETTERS, 2019, 9 (06) : 358 - 362
  • [20] Ergodicity in Planar Slow-Fast Systems Through Slow Relation Functions
    Huzak, Renato
    Jardon-Kojakhmetov, Hildeberto
    Kuehn, Christian
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2025, 24 (01): : 317 - 345