Quadratic slow-fast systems on the plane

被引:2
|
作者
Meza-Sarmiento, Ingrid S. [1 ]
Oliveira, Regilene [2 ]
Silva, Paulo R. da [3 ]
机构
[1] Univ Fed Sao Carlos, Dept Matemat, Rod Washington Luis Km 235,SP 310, BR-13565905 Sao Carlos, SP, Brazil
[2] Univ Sao Paulo, ICMC, Dept Matemat, Ave Trabalhador Sao Carlense 400, BR-13566590 Sao Carlos, SP, Brazil
[3] UNESP, IBILCE, Dept Matemat, Rua C Colombo 2265, BR-15054000 Sao Jose Do Rio Preto, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Topological invariant; Vector field; Singular perturbation; Quadratic system;
D O I
10.1016/j.nonrwa.2020.103286
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper singularly perturbed quadratic polynomial differential systems e(x) over dot = P-epsilon(x, y) = P(x, y, epsilon), (y) over dot = Q(epsilon)(x, y) = Q(x, y, epsilon) with x, y is an element of R, epsilon >= 0 and (P-epsilon, Q(epsilon)) = 1 for epsilon > 0, are considered. We prove that there are 10 classes of equivalence for these systems. We describe the dynamics of these 10 classes on the Poincare disc when epsilon = 0. For epsilon > 0, we present the possible local behavior of the solutions near of a finite and infinite equilibrium point under suitable conditions. More specifically, if p(0) is a finite equilibrium point then we obtain the local behavior for epsilon > 0 using Fenichel theory. Assuming that p(0) is an infinite equilibrium point, there exists K subset of M-0 normally hyperbolic and p(0) is an element of M-0' boolean AND K using the Poincare compactification and algebraic invariant we describe globally the dynamics for epsilon > 0 small of some classes of equivalence. (C) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:29
相关论文
共 50 条
  • [1] Synchronization of slow-fast systems
    I. Omelchenko
    M. Rosenblum
    A. Pikovsky
    The European Physical Journal Special Topics, 2010, 191 : 3 - 14
  • [2] Synchronization of slow-fast systems
    Omelchenko, I.
    Rosenblum, M.
    Pikovsky, A.
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2010, 191 (01): : 3 - 14
  • [3] Recurrence analysis of slow-fast systems
    Kasthuri, Praveen
    Pavithran, Induja
    Krishnan, Abin
    Pawar, Samadhan A.
    Sujith, R. I.
    Gejji, Rohan
    Anderson, William
    Marwan, Norbert
    Kurths, Juergen
    CHAOS, 2020, 30 (06)
  • [4] Equilibration of energy in slow-fast systems
    Shah, Kushal
    Turaev, Dmitry
    Gelfreich, Vassili
    Rom-Kedar, Vered
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2017, 114 (49) : E10514 - E10523
  • [5] Slow-fast autonomous dynamical systems
    Rossetto, B
    Lenzini, T
    Ramdani, S
    Suchey, G
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1998, 8 (11): : 2135 - 2145
  • [6] Destabilizing factors in slow-fast systems
    Rinaldi, S
    Gragnani, A
    ECOLOGICAL MODELLING, 2004, 180 (04) : 445 - 460
  • [7] Slow Invariant Manifolds of Slow-Fast Dynamical Systems
    Ginoux, Jean-Marc
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2021, 31 (07):
  • [8] Drift of slow variables in slow-fast Hamiltonian systems
    Brannstrom, N.
    Gelfreich, V.
    PHYSICA D-NONLINEAR PHENOMENA, 2008, 237 (22) : 2913 - 2921
  • [9] Slow-fast dynamics generated by noninvertible plane maps
    Mira, C
    Shilnikov, A
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2005, 15 (11): : 3509 - 3534
  • [10] Modified slow-fast analysis method for slow-fast dynamical systems with two scales in frequency domain
    Zhengdi Zhang
    Zhangyao Chen
    Qinsheng Bi
    Theoretical & Applied Mechanics Letters, 2019, 9 (06) : 358 - 362