Quadratic slow-fast systems on the plane

被引:2
|
作者
Meza-Sarmiento, Ingrid S. [1 ]
Oliveira, Regilene [2 ]
Silva, Paulo R. da [3 ]
机构
[1] Univ Fed Sao Carlos, Dept Matemat, Rod Washington Luis Km 235,SP 310, BR-13565905 Sao Carlos, SP, Brazil
[2] Univ Sao Paulo, ICMC, Dept Matemat, Ave Trabalhador Sao Carlense 400, BR-13566590 Sao Carlos, SP, Brazil
[3] UNESP, IBILCE, Dept Matemat, Rua C Colombo 2265, BR-15054000 Sao Jose Do Rio Preto, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Topological invariant; Vector field; Singular perturbation; Quadratic system;
D O I
10.1016/j.nonrwa.2020.103286
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper singularly perturbed quadratic polynomial differential systems e(x) over dot = P-epsilon(x, y) = P(x, y, epsilon), (y) over dot = Q(epsilon)(x, y) = Q(x, y, epsilon) with x, y is an element of R, epsilon >= 0 and (P-epsilon, Q(epsilon)) = 1 for epsilon > 0, are considered. We prove that there are 10 classes of equivalence for these systems. We describe the dynamics of these 10 classes on the Poincare disc when epsilon = 0. For epsilon > 0, we present the possible local behavior of the solutions near of a finite and infinite equilibrium point under suitable conditions. More specifically, if p(0) is a finite equilibrium point then we obtain the local behavior for epsilon > 0 using Fenichel theory. Assuming that p(0) is an infinite equilibrium point, there exists K subset of M-0 normally hyperbolic and p(0) is an element of M-0' boolean AND K using the Poincare compactification and algebraic invariant we describe globally the dynamics for epsilon > 0 small of some classes of equivalence. (C) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:29
相关论文
共 50 条
  • [21] Slow-Fast Systems with an Equilibrium Near the Folded Slow Manifold
    Natalia G. Gelfreikh
    Alexey V. Ivanov
    Regular and Chaotic Dynamics, 2024, 29 : 376 - 403
  • [22] A NONLINEAR TEST MODEL FOR FILTERING SLOW-FAST SYSTEMS
    Gershgorin, Boris
    Majda, Andrew
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2008, 6 (03) : 611 - 650
  • [23] Sliding Vector Fields via Slow-Fast Systems
    Llibre, Jaume
    da Silva, Paulo R.
    Teixeira, Marco A.
    BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2008, 15 (05) : 851 - 869
  • [24] Formal normal form of Ak slow-fast systems
    Jardon-Kojakhmetov, Hildeberto
    COMPTES RENDUS MATHEMATIQUE, 2015, 353 (09) : 795 - 800
  • [25] Ergodicity in Planar Slow-Fast Systems Through Slow Relation Functions
    Huzak, Renato
    Jardon-Kojakhmetov, Hildeberto
    Kuehn, Christian
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2025, 24 (01): : 317 - 345
  • [26] Heteroclinic Orbits in Slow-Fast Hamiltonian Systems with Slow Manifold Bifurcations
    Schecter, Stephen
    Sourdis, Christos
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2010, 22 (04) : 629 - 655
  • [27] On Integrable Models Close To Slow-Fast Hamiltonian Systems
    M. Avendaño-Camacho
    N. Mamani-Alegria
    Y. Vorobiev
    Lobachevskii Journal of Mathematics, 2022, 43 : 21 - 34
  • [28] An Iterative Method for the Approximation of Fibers in Slow-Fast Systems
    Kristiansen, K. Uldall
    Brons, M.
    Starke, J.
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2014, 13 (02): : 861 - 900
  • [29] Rapid geometrical chaotization in slow-fast Hamiltonian systems
    Artemyev, A. V.
    Neishtadt, A. I.
    Zelenyi, L. M.
    PHYSICAL REVIEW E, 2014, 89 (06):
  • [30] Numerical Continuation Techniques for Planar Slow-Fast Systems
    De Maesschalck, P.
    Desroches, M.
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2013, 12 (03): : 1159 - 1180