Boosting Zero-Shot Learning via Contrastive Optimization of Attribute Representations

被引:7
|
作者
Du, Yu [1 ]
Shi, Miaojing [2 ]
Wei, Fangyun [3 ]
Li, Guoqi [4 ]
机构
[1] Tsinghua Univ, Dept Precis Instrument, Beijing 100084, Peoples R China
[2] Tongji Univ, Coll Elect & Informat Engn, Shanghai 201804, Peoples R China
[3] Microsoft Res Asia, Beijing 100080, Peoples R China
[4] Chinese Acad Sci, Inst Automat, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
Index Terms- Attributes; contrastive learning; prototype gen-eration; transformer; zero-shot learning (ZSL);
D O I
10.1109/TNNLS.2023.3297134
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Zero-shot learning (ZSL) aims to recognize classes that do not have samples in the training set. One representative solution is to directly learn an embedding function associating visual features with corresponding class semantics for recognizing new classes. Many methods extend upon this solution, and recent ones are especially keen on extracting rich features from images, e.g., attribute features. These attribute features are normally extracted within each individual image; however, the common traits for features across images yet belonging to the same attribute are not emphasized. In this article, we propose a new framework to boost ZSL by explicitly learning attribute prototypes beyond images and contrastively optimizing them with attribute-level features within images. Besides the novel architecture, two elements are highlighted for attribute representations: a new prototype generation module (PM) is designed to generate attribute prototypes from attribute semantics; a hard-example-based contrastive optimization scheme is introduced to reinforce attribute-level features in the embedding space. We explore two alternative backbones, CNN-based and transformer-based, to build our framework and conduct experiments on three standard benchmarks, Caltech-UCSD Birds-200-2011 (CUB), SUN attribute database (SUN), and animals with attributes 2 (AwA2). Results on these benchmarks demonstrate that our method improves the state of the art by a considerable margin. Our codes will be available at https://github.com/dyabel/CoAR-ZSL.git.
引用
收藏
页码:1 / 14
页数:14
相关论文
共 50 条
  • [31] Learning MLatent Representations for Generalized Zero-Shot Learning
    Ye, Yalan
    Pan, Tongjie
    Luo, Tonghoujun
    Li, Jingjing
    Shen, Heng Tao
    IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 2252 - 2265
  • [32] Discriminative and Robust Attribute Alignment for Zero-Shot Learning
    Cheng, De
    Wang, Gerong
    Wang, Nannan
    Zhang, Dingwen
    Zhang, Qiang
    Gao, Xinbo
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2023, 33 (08) : 4244 - 4256
  • [33] Learning Autoencoder of Attribute Constraint for Zero-Shot Classification
    Wang, Kun
    Wu, Songsong
    Gao, Guangwei
    Zhou, Quan
    Jing, Xiao-Yuan
    PROCEEDINGS 2017 4TH IAPR ASIAN CONFERENCE ON PATTERN RECOGNITION (ACPR), 2017, : 605 - 610
  • [34] Discriminative Latent Attribute Autoencoder for Zero-Shot Learning
    Chen, Runqing
    Wu, Songsong
    Sun, Guangcheng
    PROCEEDINGS OF 2018 5TH IEEE INTERNATIONAL CONFERENCE ON CLOUD COMPUTING AND INTELLIGENCE SYSTEMS (CCIS), 2018, : 873 - 877
  • [35] Region interaction and attribute embedding for zero-shot learning
    Hu, Zhengwei
    Zhao, Haitao
    Peng, Jingchao
    Gu, Xiaojing
    INFORMATION SCIENCES, 2022, 609 : 984 - 995
  • [36] Learning Discriminative Instance Attribute for Zero-Shot Classification
    Wang, Lu
    Wu, Songsong
    Yu, Jun
    Jing, Xiao-Yuan
    PROCEEDINGS OF THE 2016 INTERNATIONAL CONFERENCE ON PROGRESS IN INFORMATICS AND COMPUTING (PIC), VOL 1, 2016, : 210 - 213
  • [37] Joint attribute chain prediction for zero-shot learning
    Qiao, Lingfeng
    Tuo, Hongya
    Wang, Jiexin
    Wang, Chao
    Jing, Zhongliang
    IET COMPUTER VISION, 2018, 12 (06) : 873 - 881
  • [38] On Implicit Attribute Localization for Generalized Zero-Shot Learning
    Yang, Shiqi
    Wang, Kai
    Herranz, Luis
    van de Weijer, Joost
    IEEE SIGNAL PROCESSING LETTERS, 2021, 28 : 872 - 876
  • [39] Attribute Propagation Network for Graph Zero-Shot Learning
    Liu, Lu
    Zhou, Tianyi
    Long, Guodong
    Jiang, Jing
    Zhang, Chengqi
    THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 4868 - 4875
  • [40] Probabilistic AND-OR Attribute Grouping for Zero-Shot Learning
    Atzmon, Yuval
    Chechik, Gal
    UNCERTAINTY IN ARTIFICIAL INTELLIGENCE, 2018, : 382 - 392