Boosting Zero-Shot Learning via Contrastive Optimization of Attribute Representations

被引:7
|
作者
Du, Yu [1 ]
Shi, Miaojing [2 ]
Wei, Fangyun [3 ]
Li, Guoqi [4 ]
机构
[1] Tsinghua Univ, Dept Precis Instrument, Beijing 100084, Peoples R China
[2] Tongji Univ, Coll Elect & Informat Engn, Shanghai 201804, Peoples R China
[3] Microsoft Res Asia, Beijing 100080, Peoples R China
[4] Chinese Acad Sci, Inst Automat, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
Index Terms- Attributes; contrastive learning; prototype gen-eration; transformer; zero-shot learning (ZSL);
D O I
10.1109/TNNLS.2023.3297134
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Zero-shot learning (ZSL) aims to recognize classes that do not have samples in the training set. One representative solution is to directly learn an embedding function associating visual features with corresponding class semantics for recognizing new classes. Many methods extend upon this solution, and recent ones are especially keen on extracting rich features from images, e.g., attribute features. These attribute features are normally extracted within each individual image; however, the common traits for features across images yet belonging to the same attribute are not emphasized. In this article, we propose a new framework to boost ZSL by explicitly learning attribute prototypes beyond images and contrastively optimizing them with attribute-level features within images. Besides the novel architecture, two elements are highlighted for attribute representations: a new prototype generation module (PM) is designed to generate attribute prototypes from attribute semantics; a hard-example-based contrastive optimization scheme is introduced to reinforce attribute-level features in the embedding space. We explore two alternative backbones, CNN-based and transformer-based, to build our framework and conduct experiments on three standard benchmarks, Caltech-UCSD Birds-200-2011 (CUB), SUN attribute database (SUN), and animals with attributes 2 (AwA2). Results on these benchmarks demonstrate that our method improves the state of the art by a considerable margin. Our codes will be available at https://github.com/dyabel/CoAR-ZSL.git.
引用
收藏
页码:1 / 14
页数:14
相关论文
共 50 条
  • [21] Boosting Zero-Shot Image Classification via Pairwise Relationship Learning
    Li, Hanhui
    Wu, Hefeng
    Lin, Shujin
    Lin, Liang
    Luo, Xiaonan
    Izquierdo, Ebroul
    COMPUTER VISION - ACCV 2016, PT I, 2017, 10111 : 85 - 99
  • [22] Co-GZSL: Feature Contrastive Optimization for Generalized Zero-Shot Learning
    Li, Qun
    Zhan, Zhuxi
    Shen, Yaying
    Bhanu, Bir
    NEURAL PROCESSING LETTERS, 2024, 56 (02)
  • [23] Co-GZSL: Feature Contrastive Optimization for Generalized Zero-Shot Learning
    Qun Li
    Zhuxi Zhan
    Yaying Shen
    Bir Bhanu
    Neural Processing Letters, 56
  • [24] Zero-Shot Stance Detection via Sentiment-Stance Contrastive Learning
    Zou, Jiaying
    Zhao, Xuechen
    Xie, Feng
    Zhou, Bin
    Zhang, Zhong
    Tian, Lei
    2022 IEEE 34TH INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE, ICTAI, 2022, : 251 - 258
  • [25] Transformer-Based Approach Via Contrastive Learning for Zero-Shot Detection
    Liu, Wei
    Chen, Hui
    Ma, Yongqiang
    Wang, Jianji
    Zheng, Nanning
    INTERNATIONAL JOURNAL OF NEURAL SYSTEMS, 2023, 33 (07)
  • [26] Semantic Contrastive Embedding for Generalized Zero-Shot Learning
    Zongyan Han
    Zhenyong Fu
    Shuo Chen
    Jian Yang
    International Journal of Computer Vision, 2022, 130 : 2606 - 2622
  • [27] A Contrastive Method for Continual Generalized Zero-Shot Learning
    Liang, Chen
    Fan, Wentao
    Liu, Xin
    Peng, Shu-Juan
    ADVANCES AND TRENDS IN ARTIFICIAL INTELLIGENCE. THEORY AND APPLICATIONS, IEA/AIE 2023, PT I, 2023, 13925 : 365 - 376
  • [28] Generalized zero-shot learning via discriminative and transferable disentangled representations
    Zhang, Chunyu
    Li, Zhanshan
    NEURAL NETWORKS, 2025, 183
  • [29] Transferable Contrastive Network for Generalized Zero-Shot Learning
    Jiang, Huajie
    Wang, Ruiping
    Shan, Shiguang
    Chen, Xilin
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 9764 - 9773
  • [30] Semantic Contrastive Embedding for Generalized Zero-Shot Learning
    Han, Zongyan
    Fu, Zhenyong
    Chen, Shuo
    Yang, Jian
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2022, 130 (11) : 2606 - 2622