Spatio-temporal segments attention for skeleton-based action recognition

被引:19
|
作者
Qiu, Helei [1 ]
Hou, Biao [1 ]
Ren, Bo [1 ]
Zhang, Xiaohua [1 ]
机构
[1] Xidian Univ, Sch Artificial Intelligence, Xian 710071, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Action recognition; Skeleton; Self-attention; Spatio-temporal joints; Feature aggregation; NETWORKS;
D O I
10.1016/j.neucom.2022.10.084
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Capturing the dependencies between joints is critical in skeleton-based action recognition. However, the existing methods cannot effectively capture the correlation of different joints between frames, which is very useful since different body parts (such as the arms and legs in "long jump") between adjacent frames move together. Focus on this issue, a novel spatio-temporal segments attention method is proposed. The skeleton sequence is divided into several segments, and several consecutive frames contained in each segment are encoded. And then an intra-segment self-attention module is proposed to capture the rela-tionship of different joints in consecutive frames. In addition, an inter-segment action attention module is introduced to capture the relationship between segments to enhance the ability to distinguish similar actions. Compared with the state-of-the-art methods, our method achieves better performance on two large-scale datasets. (c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页码:30 / 38
页数:9
相关论文
共 50 条
  • [41] Skeleton-Based Human Action Recognition through Third-Order Tensor Representation and Spatio-Temporal Analysis
    Barmpoutis, Panagiotis
    Stathaki, Tania
    Camarinopoulos, Stephanos
    INVENTIONS, 2019, 4 (01)
  • [42] Spatial–Temporal gated graph attention network for skeleton-based action recognition
    Mrugendrasinh Rahevar
    Amit Ganatra
    Pattern Analysis and Applications, 2023, 26 (3) : 929 - 939
  • [43] Spatial-temporal graph attention networks for skeleton-based action recognition
    Huang, Qingqing
    Zhou, Fengyu
    He, Jiakai
    Zhao, Yang
    Qin, Runze
    JOURNAL OF ELECTRONIC IMAGING, 2020, 29 (05)
  • [44] Graph transformer network with temporal kernel attention for skeleton-based action recognition
    Department of Computer Science and Engineering, School of Information Science and Engineering, Yunnan University, Kunming
    650504, China
    Knowl Based Syst,
  • [45] ENSEMBLE SPATIO-TEMPORAL DISTANCE NET FOR SKELETON BASED ACTION RECOGNITION
    Naveenkumar, M.
    Domnic, S.
    SCALABLE COMPUTING-PRACTICE AND EXPERIENCE, 2019, 20 (03): : 485 - 494
  • [46] Graph transformer network with temporal kernel attention for skeleton-based action recognition
    Liu, Yanan
    Zhang, Hao
    Xu, Dan
    He, Kangjian
    KNOWLEDGE-BASED SYSTEMS, 2022, 240
  • [47] Global Spatio-Temporal Attention for Action Recognition Based on 3D Human Skeleton Data
    Han, Yun
    Chung, Sheng-Luen
    Xiao, Qiang
    Lin, Wei You
    Su, Shun-Feng
    IEEE ACCESS, 2020, 8 : 88604 - 88616
  • [48] Skeleton-based abnormal gait recognition with spatio-temporal attention enhanced gait-structural graph convolutional networks
    Tian, Haoyu
    Ma, Xin
    Wu, Hanbo
    Li, Yibin
    NEUROCOMPUTING, 2022, 473 : 116 - 126
  • [49] Recognizing Skeleton-Based Hand Gestures by a Spatio-Temporal Network
    Li, Xin
    Liao, Jun
    Liu, Li
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2021: APPLIED DATA SCIENCE TRACK, PT IV, 2021, 12978 : 151 - 167
  • [50] Insight on Attention Modules for Skeleton-Based Action Recognition
    Jiang, Quanyan
    Wu, Xiaojun
    Kittler, Josef
    PATTERN RECOGNITION AND COMPUTER VISION, PT I, 2021, 13019 : 242 - 255