Harnessing CRISPR-Cas adaptation for RNA recording and beyond

被引:1
|
作者
Oh, Gyeong-Seok [1 ]
An, Seongjin [1 ,2 ]
Kim, Sungchul [1 ]
机构
[1] Inst for Basic Sci Korea, Ctr RNA Res, Seoul 08826, South Korea
[2] Korea Univ, Sch Life Sci & Biotechnol, Dept Life Sci, Seoul 02841, South Korea
关键词
Cas1-Cas2; CRISPR adaptation; CRISPR-Cas; RNA re- cording; RT-fused Cas1; SPACER ACQUISITION; EVOLUTIONARY CLASSIFICATION; PROTEIN CLEAVAGE; STRUCTURAL BASIS; HOST FACTOR; INTEGRATION; COMPLEX; IMMUNITY; SYSTEMS; BINDING;
D O I
10.5483/BMBRep.2023-0050
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Prokaryotes encode clustered regularly interspaced short palindromic repeat (CRISPR) arrays and CRISPR-associated (Cas) genes as an adaptive immune machinery. CRISPR-Cas systems effectively protect hosts from the invasion of foreign enemies, such as bacteriophages and plasmids. During a process called 'adaptation', non-self-nucleic acid fragments are acquired as spacers between repeats in the host CRISPR array, to establish immunological memory. The highly conserved Cas1-Cas2 complexes function as molecular recorders to integrate spacers in a time course manner, which can subsequently be expressed as crRNAs complexed with Cas effector proteins for the RNAguided interference pathways. In some of the RNA-targeting type III systems, Cas1 proteins are fused with reverse transcriptase (RT), indicating that RT-Cas1-Cas2 complexes can acquire RNA transcripts for spacer acquisition. In this review, we summarize current studies that focus on the molecular structure and function of the RT-fused Cas1-Cas2 integrase, and its potential applications as a directional RNA-recording tool in cells. Furthermore, we highlight outstanding questions for RT-Cas1-Cas2 studies and future directions for RNA-recording CRISPR technologies. [BMB Reports 2024; 57(1): 40-49]
引用
收藏
页码:40 / 49
页数:10
相关论文
共 50 条
  • [41] Harnessing Type I and Type III CRISPR-Cas systems for genome editing
    Li, Yingjun
    Pan, Saifu
    Zhang, Yan
    Ren, Min
    Feng, Mingxia
    Peng, Nan
    Chen, Lanming
    Liang, Yun Xiang
    She, Qunxin
    NUCLEIC ACIDS RESEARCH, 2016, 44 (04)
  • [42] DNA and RNA interference mechanisms by CRISPR-Cas surveillance complexes
    Plagens, Andre
    Richter, Hagen
    Charpentier, Emmanuelle
    Randau, Lennart
    FEMS MICROBIOLOGY REVIEWS, 2015, 39 (03) : 442 - 463
  • [43] Structure of an RNA Silencing Complex of the CRISPR-Cas Immune System
    Spilman, Michael
    Cocozaki, Alexis
    Hale, Caryn
    Shao, Yaming
    Ramia, Nancy
    Terns, Rebeca
    Terns, Michael
    Li, Hong
    Stagg, Scott
    MOLECULAR CELL, 2013, 52 (01) : 146 - 152
  • [44] Enhanced RNA-targeting CRISPR-Cas technology in zebrafish
    Moreno-Sanchez, Ismael
    Hernandez-Huertas, Luis
    Nahon-Cano, Daniel
    Martinez-Garcia, Pedro Manuel
    Treichel, Anthony J.
    Gomez-Marin, Carlos
    Tomas-Gallardo, Laura
    da Silva Pescador, Gabriel
    Kushawah, Gopal
    Egidy, Rhonda
    Perera, Anoja
    Diaz-Moscoso, Alejandro
    Cano-Ruiz, Alejandra
    Walker II, John A.
    Munoz, Manuel J.
    Holden, Kevin
    Galceran, Joan
    Nieto, M. angela
    Bazzini, Ariel A.
    Moreno-Mateos, Miguel A.
    NATURE COMMUNICATIONS, 2025, 16 (01)
  • [45] CRISPR-Cas mediated RNA modulation for improved plant defense
    Cook, D.
    Huang, J.
    Sharma, V.
    PHYTOPATHOLOGY, 2018, 108 (10) : 12 - 12
  • [46] Shooting the messenger: RNA-targetting CRISPR-Cas systems
    Zhu, Yifan
    Klompe, Sanne E.
    Vlot, Marnix
    van der Oost, John
    Staals, Raymond H. J.
    BIOSCIENCE REPORTS, 2018, 38
  • [47] Advances in CRISPR-Cas systems for RNA targeting, tracking and editing
    Wang, Fei
    Wang, Lianrong
    Zou, Xuan
    Duan, Suling
    Li, Zhiqiang
    Deng, Zixin
    Luo, Jie
    Lee, Sang Yup
    Chen, Shi
    BIOTECHNOLOGY ADVANCES, 2019, 37 (05) : 708 - 729
  • [48] CRISPR-Associated Primase-Polymerases are implicated in prokaryotic CRISPR-Cas adaptation
    Katerina Zabrady
    Matej Zabrady
    Peter Kolesar
    Arthur W. H. Li
    Aidan J. Doherty
    Nature Communications, 12
  • [49] CRISPR-Associated Primase-Polymerases are implicated in prokaryotic CRISPR-Cas adaptation
    Zabrady, Katerina
    Zabrady, Matej
    Kolesar, Peter
    Li, Arthur W. H.
    Doherty, Aidan J.
    NATURE COMMUNICATIONS, 2021, 12 (01)
  • [50] Cas9 specifies functional viral targets during CRISPR-Cas adaptation
    Heler, Robert
    Samai, Poulami
    Modell, Joshua W.
    Weiner, Catherine
    Goldberg, Gregory W.
    Bikard, David
    Marraffini, Luciano A.
    NATURE, 2015, 519 (7542) : 199 - +