Harnessing CRISPR-Cas adaptation for RNA recording and beyond

被引:1
|
作者
Oh, Gyeong-Seok [1 ]
An, Seongjin [1 ,2 ]
Kim, Sungchul [1 ]
机构
[1] Inst for Basic Sci Korea, Ctr RNA Res, Seoul 08826, South Korea
[2] Korea Univ, Sch Life Sci & Biotechnol, Dept Life Sci, Seoul 02841, South Korea
关键词
Cas1-Cas2; CRISPR adaptation; CRISPR-Cas; RNA re- cording; RT-fused Cas1; SPACER ACQUISITION; EVOLUTIONARY CLASSIFICATION; PROTEIN CLEAVAGE; STRUCTURAL BASIS; HOST FACTOR; INTEGRATION; COMPLEX; IMMUNITY; SYSTEMS; BINDING;
D O I
10.5483/BMBRep.2023-0050
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Prokaryotes encode clustered regularly interspaced short palindromic repeat (CRISPR) arrays and CRISPR-associated (Cas) genes as an adaptive immune machinery. CRISPR-Cas systems effectively protect hosts from the invasion of foreign enemies, such as bacteriophages and plasmids. During a process called 'adaptation', non-self-nucleic acid fragments are acquired as spacers between repeats in the host CRISPR array, to establish immunological memory. The highly conserved Cas1-Cas2 complexes function as molecular recorders to integrate spacers in a time course manner, which can subsequently be expressed as crRNAs complexed with Cas effector proteins for the RNAguided interference pathways. In some of the RNA-targeting type III systems, Cas1 proteins are fused with reverse transcriptase (RT), indicating that RT-Cas1-Cas2 complexes can acquire RNA transcripts for spacer acquisition. In this review, we summarize current studies that focus on the molecular structure and function of the RT-fused Cas1-Cas2 integrase, and its potential applications as a directional RNA-recording tool in cells. Furthermore, we highlight outstanding questions for RT-Cas1-Cas2 studies and future directions for RNA-recording CRISPR technologies. [BMB Reports 2024; 57(1): 40-49]
引用
收藏
页码:40 / 49
页数:10
相关论文
共 50 条
  • [31] Cooperation between Different CRISPR-Cas Types Enables Adaptation in an RNA-Targeting System
    Hoikkala, Ville
    Ravantti, Janne
    Diez-Villasenor, Cesar
    Tiirola, Marja
    Conrad, Rachel A.
    McBride, Mark J.
    Moineau, Sylvain
    Sundberg, Lotta-Riina
    MBIO, 2021, 12 (02):
  • [32] Diversification of the CRISPR Toolbox: Applications of CRISPR-Cas Systems Beyond Genome Editing
    Balderston, Sarah
    Clouse, Gabrielle
    Ripoll, Juan-Jose
    Pratt, Grace K.
    Gasiunas, Giedrius
    Bock, Jens-Ole
    Bennett, Eric Paul
    Aran, Kiana
    CRISPR JOURNAL, 2021, 4 (03): : 400 - 415
  • [33] CRISPR-Cas bioinformatics
    Alkhnbashi, Omer S.
    Meier, Tobias
    Mitrofanov, Alexander
    Backofen, Rolf
    Voss, Bjoern
    METHODS, 2020, 172 : 3 - 11
  • [34] Sabotage of CRISPR-Cas
    Du Toit, Andrea
    NATURE REVIEWS MICROBIOLOGY, 2024, 22 (01) : 1 - 1
  • [35] Orthogonal CRISPR-Cas tools for genome editing, inhibition, and CRISPR recording in zebrafish embryos
    Takasugi, Paige R.
    Wang, Shengzhou
    Truong, Kimberly T.
    Drage, Evan P.
    Kanishka, Sahar N.
    Higbee, Marissa A.
    Bamidele, Nathan
    Ojelabi, Ogooluwa
    Sontheimer, Erik J.
    Gagnon, James A.
    GENETICS, 2022, 220 (01)
  • [36] Investigating the molecular mechanism of CRISPR-Cas adaptation of Streptococcus thermophilus
    Louis, Edwin Pierre
    Wei, Yunzhou
    Terns, Michael P.
    JOURNAL OF IMMUNOLOGY, 2017, 198 (01):
  • [37] Type III CRISPR-Cas: beyond the Cas10 effector complex
    Stella, Gianna
    Marraff, Luciano
    TRENDS IN BIOCHEMICAL SCIENCES, 2024, 49 (01) : 28 - 37
  • [38] Widespread CRISPR-derived RNA regulatory elements in CRISPR-Cas systems
    Shmakov, Sergey A.
    Barth, Zachary K.
    Makarova, Kira S.
    Wolf, Yuri, I
    Brover, Vyacheslav
    Peters, Joseph E.
    Koonin, Eugene, V
    NUCLEIC ACIDS RESEARCH, 2023, 51 (15) : 8150 - 8168
  • [39] Harnessing type I CRISPR-Cas systems for genome engineering in human cells
    Cameron, Peter
    Coons, Mary M.
    Klompe, Sanne E.
    Lied, Alexandra M.
    Smith, Stephen C.
    Vidal, Bastien
    Donohoue, Paul D.
    Rotstein, Tomer
    Kohrs, Bryan W.
    Nyer, David B.
    Kennedy, Rachel
    Banh, Lynda M.
    Williams, Carolyn
    Toh, Mckenzi S.
    Irby, Matthew J.
    Edwards, Leslie S.
    Lin, Chun-Han
    Owen, Arthur L. G.
    Kunne, Tim
    van der Oost, John
    Brouns, Stan J. J.
    Slorach, Euan M.
    Fuller, Chris K.
    Gradia, Scott
    Kanner, Steven B.
    May, Andrew P.
    Sternberg, Samuel H.
    NATURE BIOTECHNOLOGY, 2019, 37 (12) : 1471 - +
  • [40] Harnessing CRISPR-Cas to Combat COVID-19: From Diagnostics to Therapeutics
    Chan, Kok Gan
    Ang, Geik Yong
    Yu, Choo Yee
    Yean, Chan Yean
    LIFE-BASEL, 2021, 11 (11):