ARE-Net: An Improved Interactive Model for Accurate Building Extraction in High-Resolution Remote Sensing Imagery

被引:1
|
作者
Weng, Qian [1 ,2 ]
Wang, Qin [1 ,2 ]
Lin, Yifeng [1 ,2 ]
Lin, Jiawen [1 ,2 ]
机构
[1] Fuzhou Univ, Coll Comp & Data Sci, Fuzhou 350000, Peoples R China
[2] Fuzhou Univ, Fujian Key Lab Network Comp & Intelligent Informat, Fuzhou 350000, Peoples R China
基金
中国国家自然科学基金;
关键词
interactive building extraction; adaptive-radius encoding; two-stage training; remote sensing; SEGMENTATION; CUT;
D O I
10.3390/rs15184457
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Accurate building extraction for high-resolution remote sensing images is critical for topographic mapping, urban planning, and many other applications. Its main task is to label each pixel point as a building or non-building. Although deep-learning-based algorithms have significantly enhanced the accuracy of building extraction, fully automated methods for building extraction are limited by the requirement for a large number of annotated samples, resulting in a limited generalization ability, easy misclassification in complex remote sensing images, and higher costs due to the need for a large number of annotated samples. To address these challenges, this paper proposes an improved interactive building extraction model, ARE-Net, which adopts a deep interactive segmentation approach. In this paper, we present several key contributions. Firstly, an adaptive-radius encoding (ARE) module was designed to optimize the interaction features of clicks based on the varying shapes and distributions of buildings to provide maximum a priori information for building extraction. Secondly, a two-stage training strategy was proposed to enhance the convergence speed and efficiency of the segmentation process. Finally, some comprehensive experiments using two models of different sizes (HRNet18s+OCR and HRNet32+OCR) were conducted on the Inria and WHU building datasets. The results showed significant improvements over the current state-of-the-art method in terms of NoC90. The proposed method achieved performance enhancements of 7.98% and 13.03% with HRNet18s+OCR and 7.34% and 15.49% with HRNet32+OCR on the WHU and Inria datasets, respectively. Furthermore, the experiments demonstrated that the proposed ARE-Net method significantly reduced the annotation costs while improving the convergence speed and generalization performance.
引用
收藏
页数:24
相关论文
共 50 条
  • [41] Unsupervised Domain Adaptation for Building Extraction of High-Resolution Remote Sensing Imagery Based on Decoupling Style and Semantic Features
    Chen, Jie
    Zhu, Jingru
    He, Peien
    Guo, Ya
    Hong, Liang
    Yang, Yin
    Deng, Min
    Sun, Geng
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 17
  • [42] BUILDING EXTRACTION FROM HIGH-RESOLUTION REMOTE SENSING IMAGERY BASED ON MULTI-SCALE FEATURE FUSION AND ENHANCEMENT
    Chen, Y.
    Cheng, H.
    Yao, S.
    Hu, Z.
    XXIV ISPRS CONGRESS: IMAGING TODAY, FORESEEING TOMORROW, COMMISSION III, 2022, 43-B3 : 55 - 60
  • [43] Road Extraction from High-Resolution Remote Sensing Imagery Using Deep Learning
    Xu, Yongyang
    Xie, Zhong
    Feng, Yaxing
    Chen, Zhanlong
    REMOTE SENSING, 2018, 10 (09)
  • [44] Improved Anchor-Free Instance Segmentation for Building Extraction from High-Resolution Remote Sensing Images
    Wu, Tong
    Hu, Yuan
    Peng, Ling
    Chen, Ruonan
    REMOTE SENSING, 2020, 12 (18)
  • [45] Multitemporal greenhouse mapping for high-resolution remote sensing imagery based on an improved YOLOX
    Hong, Ruikai
    Xiao, Bin
    Yan, He
    Liu, Jiamin
    Liu, Pu
    Song, Zhihua
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2023, 206
  • [46] SCA-Net: Multiscale Contextual Information Network for Building Extraction Based on High-Resolution Remote Sensing Images
    Wang, Yuanzhi
    Zhao, Qingzhan
    Wu, Yuzhen
    Tian, Wenzhong
    Zhang, Guoshun
    REMOTE SENSING, 2023, 15 (18)
  • [47] Accurate cloud detection in high-resolution remote sensing imagery by weakly supervised deep learning
    Li, Yansheng
    Chen, Wei
    Zhang, Yongjun
    Tao, Chao
    Xiao, Rui
    Tan, Yihua
    REMOTE SENSING OF ENVIRONMENT, 2020, 250
  • [48] Layout-Anchored Prioritizing Continual Learning for Continuous Building Footprint Extraction From High-Resolution Remote Sensing Imagery
    Chen, Dingyuan
    Song, Zhaohui
    Ma, Ailong
    Zhong, Yanfei
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2025, 63
  • [49] SNLRUX plus plus for Building Extraction From High-Resolution Remote Sensing Images
    Lei, Yanjing
    Yu, Jiamin
    Chan, Sixian
    Wu, Wei
    Liu, Xiaoying
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2022, 15 : 409 - 421
  • [50] Building Extraction From Very High-Resolution Remote Sensing Image With Few Data
    Cui, Zhenqi
    Nie, Pei
    Persello, Claudio
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2024, 21