ARE-Net: An Improved Interactive Model for Accurate Building Extraction in High-Resolution Remote Sensing Imagery

被引:1
|
作者
Weng, Qian [1 ,2 ]
Wang, Qin [1 ,2 ]
Lin, Yifeng [1 ,2 ]
Lin, Jiawen [1 ,2 ]
机构
[1] Fuzhou Univ, Coll Comp & Data Sci, Fuzhou 350000, Peoples R China
[2] Fuzhou Univ, Fujian Key Lab Network Comp & Intelligent Informat, Fuzhou 350000, Peoples R China
基金
中国国家自然科学基金;
关键词
interactive building extraction; adaptive-radius encoding; two-stage training; remote sensing; SEGMENTATION; CUT;
D O I
10.3390/rs15184457
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Accurate building extraction for high-resolution remote sensing images is critical for topographic mapping, urban planning, and many other applications. Its main task is to label each pixel point as a building or non-building. Although deep-learning-based algorithms have significantly enhanced the accuracy of building extraction, fully automated methods for building extraction are limited by the requirement for a large number of annotated samples, resulting in a limited generalization ability, easy misclassification in complex remote sensing images, and higher costs due to the need for a large number of annotated samples. To address these challenges, this paper proposes an improved interactive building extraction model, ARE-Net, which adopts a deep interactive segmentation approach. In this paper, we present several key contributions. Firstly, an adaptive-radius encoding (ARE) module was designed to optimize the interaction features of clicks based on the varying shapes and distributions of buildings to provide maximum a priori information for building extraction. Secondly, a two-stage training strategy was proposed to enhance the convergence speed and efficiency of the segmentation process. Finally, some comprehensive experiments using two models of different sizes (HRNet18s+OCR and HRNet32+OCR) were conducted on the Inria and WHU building datasets. The results showed significant improvements over the current state-of-the-art method in terms of NoC90. The proposed method achieved performance enhancements of 7.98% and 13.03% with HRNet18s+OCR and 7.34% and 15.49% with HRNet32+OCR on the WHU and Inria datasets, respectively. Furthermore, the experiments demonstrated that the proposed ARE-Net method significantly reduced the annotation costs while improving the convergence speed and generalization performance.
引用
收藏
页数:24
相关论文
共 50 条
  • [21] Building area extraction from the high spatial resolution remote sensing imagery
    Shi, Wenzao
    Mao, Zhengyuan
    Liu, Jinqing
    EARTH SCIENCE INFORMATICS, 2019, 12 (01) : 19 - 29
  • [22] Building area extraction from the high spatial resolution remote sensing imagery
    Wenzao Shi
    Zhengyuan Mao
    Jinqing Liu
    Earth Science Informatics, 2019, 12 : 19 - 29
  • [23] House building extraction from high-resolution remote sensing images based on IEU-Net
    Wang Z.
    Zhou Y.
    Wang S.
    Wang F.
    Xu Z.
    National Remote Sensing Bulletin, 2021, 25 (11) : 2245 - 2254
  • [24] The Study on Building Outline Extraction in High-Resolution Remote Sensing Image
    Wang, Runfang
    PROCEEDINGS OF ANNUAL CONFERENCE OF CHINA INSTITUTE OF COMMUNICATIONS, 2010, : 352 - 355
  • [25] High-Resolution Remote Sensing Image Building Extraction based on PRCUnet
    Xu J.
    Liu W.
    Shan H.
    Shi J.
    Li E.
    Zhang L.
    Li X.
    Liu, Wei (liuw@jsnu.edu.cn), 1838, Science Press (23): : 1838 - 1849
  • [26] Advances in urban information extraction from high-resolution remote sensing imagery
    Jianya Gong
    Chun Liu
    Xin Huang
    Science China Earth Sciences, 2020, 63 : 463 - 475
  • [27] Advances in urban information extraction from high-resolution remote sensing imagery
    Jianya GONG
    Chun LIU
    Xin HUANG
    ScienceChina(EarthSciences), 2020, 63 (04) : 463 - 475
  • [28] Efficient Occluded Road Extraction from High-Resolution Remote Sensing Imagery
    Feng, Dejun
    Shen, Xingyu
    Xie, Yakun
    Liu, Yangge
    Wang, Jian
    REMOTE SENSING, 2021, 13 (24)
  • [29] Advances in urban information extraction from high-resolution remote sensing imagery
    Gong, Jianya
    Liu, Chun
    Huang, Xin
    SCIENCE CHINA-EARTH SCIENCES, 2020, 63 (04) : 463 - 475
  • [30] A new method of road extraction from high-resolution remote sensing imagery
    Ni, Cui
    Guan, Zequn
    Ye, Qin
    SIXTH INTERNATIONAL SYMPOSIUM ON DIGITAL EARTH: MODELS, ALGORITHMS, AND VIRTUAL REALITY, 2010, 7840