Poisson points, resetting, universality and the role of the last item

被引:1
|
作者
Godreche, Claude [1 ]
机构
[1] Univ Paris Saclay, Inst Phys Theor, CNRS, CEA, F-91191 Gif Sur Yvette, France
关键词
universality; renewal processes; Poisson points; resetting;
D O I
10.1088/1751-8121/accee8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
For a stochastic process reset at random times, we discuss to what extent the probabilities of some orderings of observables associated with the intervals of time between resetting events are universal, i.e. independent of the choice of the observables, and in particular, to what extent universality depends on the choice of the distribution of these intervals. For Poissonian resetting, universality relies only on a combinatorial argument and on the statistical properties of Poisson points. For a generic distribution of time intervals between resets, universality no longer holds in general.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Compound Poisson approximation and the clustering of random points
    Barbour, AD
    Månsson, M
    ADVANCES IN APPLIED PROBABILITY, 2000, 32 (01) : 19 - 38
  • [42] Classification of points in superpositions of Strauss and Poisson processes
    Redenbach, Claudia
    Sarkka, Aila
    Sormani, Martina
    SPATIAL STATISTICS, 2015, 12 : 81 - 95
  • [43] Poisson spacing statistics for lattice points on circles
    Kurlberg, Par
    Lester, Stephen
    INVENTIONES MATHEMATICAE, 2025, : 537 - 585
  • [44] On fixed points of Poisson shot noise transforms
    Iksanov, AM
    Jurek, ZJ
    ADVANCES IN APPLIED PROBABILITY, 2002, 34 (04) : 798 - 825
  • [45] Localization and universality of Poisson statistics for the multidimensional Anderson model at weak disorder
    Wei-Min Wang
    Inventiones mathematicae, 2001, 146 : 365 - 398
  • [46] Poisson approximation in connection with clustering of random points
    Månsson, M
    ANNALS OF APPLIED PROBABILITY, 1999, 9 (02): : 465 - 492
  • [47] ON THE NUMBER OF POINTS OF A HOMOGENEOUS POISSON-PROCESS
    AUER, P
    HORNIK, K
    JOURNAL OF MULTIVARIATE ANALYSIS, 1994, 48 (01) : 115 - 156
  • [48] A Note on the Poisson's Binomial Distribution in Item Response Theory
    Gonzalez, Jorge
    Wiberg, Marie
    von Davier, Alina A.
    APPLIED PSYCHOLOGICAL MEASUREMENT, 2016, 40 (04) : 302 - 310
  • [49] Universality for black hole heat engines near critical points
    DiMarco, Maria C.
    Jess, Sierra L.
    Hennigar, Robie A.
    Mann, Robert B.
    PHYSICAL REVIEW D, 2023, 107 (04)
  • [50] Real roots of random polynomials: universality close to accumulation points
    Aldous, AP
    Fyodorov, YV
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (04): : 1231 - 1239