Localization and universality of Poisson statistics for the multidimensional Anderson model at weak disorder

被引:0
|
作者
Wei-Min Wang
机构
[1] UMR 8628 du CNRS,
[2] Département de mathématiques,undefined
[3] Université Paris-Sud,undefined
[4] Bâtiment 425,undefined
[5] 91405 Orsay Cedex,undefined
[6] France (e-mail: wei-min.wang@math.u-psud.fr),undefined
来源
Inventiones mathematicae | 2001年 / 146卷
关键词
Mathematics Subject Classification (1991): 35P, 60K, 81V;
D O I
暂无
中图分类号
学科分类号
摘要
We prove Anderson localization with the mean-field Lyapunov exponent and Poisson statistics for eigenvalue spacing for the multi-dimensional Anderson model at weak disorder. These results are obtained by developing the supersymmetric formalism initiated in [W1] (see also [SjW]). rid
引用
收藏
页码:365 / 398
页数:33
相关论文
共 50 条