Localization and universality of Poisson statistics for the multidimensional Anderson model at weak disorder

被引:0
|
作者
Wei-Min Wang
机构
[1] UMR 8628 du CNRS,
[2] Département de mathématiques,undefined
[3] Université Paris-Sud,undefined
[4] Bâtiment 425,undefined
[5] 91405 Orsay Cedex,undefined
[6] France (e-mail: wei-min.wang@math.u-psud.fr),undefined
来源
Inventiones mathematicae | 2001年 / 146卷
关键词
Mathematics Subject Classification (1991): 35P, 60K, 81V;
D O I
暂无
中图分类号
学科分类号
摘要
We prove Anderson localization with the mean-field Lyapunov exponent and Poisson statistics for eigenvalue spacing for the multi-dimensional Anderson model at weak disorder. These results are obtained by developing the supersymmetric formalism initiated in [W1] (see also [SjW]). rid
引用
收藏
页码:365 / 398
页数:33
相关论文
共 50 条
  • [21] The Universality Classes in the Parabolic Anderson Model
    Remco van der Hofstad
    Wolfgang König
    Peter Mörters
    Communications in Mathematical Physics, 2006, 267 : 307 - 353
  • [22] Anderson universality in a model of disordered phonons
    Pinski, S. D.
    Schirmacher, W.
    Roemer, R. A.
    EPL, 2012, 97 (01)
  • [23] Anderson localization and correlated disorder
    Izrailev, F. M.
    MESOSCOPIC PHYSICS IN COMPLEX MEDIA, 2010,
  • [24] ANDERSON LOCALIZATION WITH CORRELATED DISORDER
    STEPHENS, MD
    SKINNER, JL
    CHEMICAL PHYSICS, 1993, 177 (03) : 727 - 731
  • [25] The Weak Localization for the Alloy-Type Anderson Model on a Cubic Lattice
    Zhenwei Cao
    Alexander Elgart
    Journal of Statistical Physics, 2012, 148 : 1006 - 1039
  • [26] The Weak Localization for the Alloy-Type Anderson Model on a Cubic Lattice
    Cao, Zhenwei
    Elgart, Alexander
    JOURNAL OF STATISTICAL PHYSICS, 2012, 148 (06) : 1006 - 1039
  • [27] Anderson localization at large disorder
    Ujfalusi, Laszlo
    Varga, Imre
    PHYSICAL REVIEW B, 2012, 86 (12)
  • [28] The universality classes in the parabolic Anderson model
    van der Hofstad, Remco
    Koenig, Wolfgang
    Moerters, Peter
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2006, 267 (02) : 307 - 353
  • [29] DENSITY OF STATES AND LOCALIZATION FOR ANDERSON MODEL OF CELLULAR DISORDER IN CPA
    SCHONHAMMER, K
    PHYSICS LETTERS A, 1971, A 36 (03) : 181 - +
  • [30] Paracontrolled distributions on Bravais lattices and weak universality of the 2d parabolic Anderson model
    Martin, Joerg
    Perkowski, Nicolas
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2019, 55 (04): : 2058 - 2110